• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metodologia para elaboração de modelos de fragilidade ambiental utilizando redes neurais / Methodology for the elaboration of environmental fragility models using artificial neural networks

Sporl, Christiane 29 August 2007 (has links)
Este trabalho aborda o desafio da modelagem da fragilidade ambiental, que implica em, além de compreender a intrínseca e dinâmica relação existente entre as componentes físicas, bióticas e sócio-econômicas dos sistemas ambientais, em traduzir esse conhecimento num modelo matemático. Para elucidar essa dificuldade foram apresentados e comparados os resultados gerados por dois modelos empíricos de fragilidade ambiental amplamente utilizados no planejamento físico-territorial brasileiro (CREPANI et al. 2001 e ROSS, 1994). Estes dois modelos foram aplicados em duas áreasteste, com resultados bastante divergentes. Neste contexto de incertezas, este trabalho testou a viabilidade e a confiabilidade de uma nova ferramenta a ser aplicada na elaboração de modelos de fragilidade ambiental, as redes neurais artificiais (RNAs). Empregando os conhecimentos e experiências de especialistas na área em questão, extraídos das respostas dadas por estes durante a comparação de variáveis e cenários aplicados através dos programas adaptados para esta finalidade: Pesquisa de Calibração, Pesquisa de Escalonamento de Variáveis e Pesquisa de Avaliação de Cenários. Estes programas geraram uma base de dados referente ao modo de avaliação de cada especialista quanto à fragilidade ambiental, sendo aplicada no treinamento das RNAs, para que a rede assimilasse o padrão de avaliação deste especialista. Os resultados comprovam de que é possível emular, com razoável confiabilidade, o padrão de avaliação de especialistas na definição da fragilidade dos sistemas ambientais, eliminando assim, a arbitrariedade e a subjetividade do processo de elaboração de modelos de fragilidade ambiental. Este trabalho não propõe um novo modelo, mas uma metodologia para a construção de modelos, utilizando redes neurais artificiais, dando um primeiro passo em busca de novas técnicas, temidas pelos geógrafos, mas necessárias para a evolução da ciência geográfica. / This paper deals with the challenge in modeling environmental fragility, which implies not only the understanding of the intrinsic and dynamic relationship that exists between the physical, biotic and socio-economic components of environmental systems, but also in translating this knowledge in a mathematical model. In order to shed light on this difficulty, the results generated by two empirical models of environmental fragility were presented and compared, models that are widely used in Brazilian physical-territorial planning. (CREPANI et al. 2001 and ROSS, 1994). These two models were applied in two thesis-areas with very diverging results. Within this context of uncertainties, this paper tested the feasibility and reliability of a new tool to be applied in the elaboration of environmental fragility models, the artificial neural networks (ANN). Tapping on the knowledge and experience of specialists in this area, extracted from the answers given by them during the comparison of variables and scenarios applied in programs adapted for this objective: Gauging Research, Scheduling of Variables Research and Scenario Evaluation Research. These programs generated a databank related to the evaluation format of each specialist regarding environmental fragility applied in the training of ANNs, so that the network would assimilate the evaluation standard of that specialist. The results proved that it is possible to emulate, with reasonable reliability, the evaluation standard of specialists in the definition of environmental systems fragility, eliminating in this way, arbitrariness and subjectivity in the elaboration process of environmental fragility models. This work does not presuppose a new model, rather a methodology for the construction of models, using artificial neural networks, taking the first step in the search of new techniques, albeit feared by the geographers, however, necessary for the evolution of geographic science.
2

Metodologia para elaboração de modelos de fragilidade ambiental utilizando redes neurais / Methodology for the elaboration of environmental fragility models using artificial neural networks

Christiane Sporl 29 August 2007 (has links)
Este trabalho aborda o desafio da modelagem da fragilidade ambiental, que implica em, além de compreender a intrínseca e dinâmica relação existente entre as componentes físicas, bióticas e sócio-econômicas dos sistemas ambientais, em traduzir esse conhecimento num modelo matemático. Para elucidar essa dificuldade foram apresentados e comparados os resultados gerados por dois modelos empíricos de fragilidade ambiental amplamente utilizados no planejamento físico-territorial brasileiro (CREPANI et al. 2001 e ROSS, 1994). Estes dois modelos foram aplicados em duas áreasteste, com resultados bastante divergentes. Neste contexto de incertezas, este trabalho testou a viabilidade e a confiabilidade de uma nova ferramenta a ser aplicada na elaboração de modelos de fragilidade ambiental, as redes neurais artificiais (RNAs). Empregando os conhecimentos e experiências de especialistas na área em questão, extraídos das respostas dadas por estes durante a comparação de variáveis e cenários aplicados através dos programas adaptados para esta finalidade: Pesquisa de Calibração, Pesquisa de Escalonamento de Variáveis e Pesquisa de Avaliação de Cenários. Estes programas geraram uma base de dados referente ao modo de avaliação de cada especialista quanto à fragilidade ambiental, sendo aplicada no treinamento das RNAs, para que a rede assimilasse o padrão de avaliação deste especialista. Os resultados comprovam de que é possível emular, com razoável confiabilidade, o padrão de avaliação de especialistas na definição da fragilidade dos sistemas ambientais, eliminando assim, a arbitrariedade e a subjetividade do processo de elaboração de modelos de fragilidade ambiental. Este trabalho não propõe um novo modelo, mas uma metodologia para a construção de modelos, utilizando redes neurais artificiais, dando um primeiro passo em busca de novas técnicas, temidas pelos geógrafos, mas necessárias para a evolução da ciência geográfica. / This paper deals with the challenge in modeling environmental fragility, which implies not only the understanding of the intrinsic and dynamic relationship that exists between the physical, biotic and socio-economic components of environmental systems, but also in translating this knowledge in a mathematical model. In order to shed light on this difficulty, the results generated by two empirical models of environmental fragility were presented and compared, models that are widely used in Brazilian physical-territorial planning. (CREPANI et al. 2001 and ROSS, 1994). These two models were applied in two thesis-areas with very diverging results. Within this context of uncertainties, this paper tested the feasibility and reliability of a new tool to be applied in the elaboration of environmental fragility models, the artificial neural networks (ANN). Tapping on the knowledge and experience of specialists in this area, extracted from the answers given by them during the comparison of variables and scenarios applied in programs adapted for this objective: Gauging Research, Scheduling of Variables Research and Scenario Evaluation Research. These programs generated a databank related to the evaluation format of each specialist regarding environmental fragility applied in the training of ANNs, so that the network would assimilate the evaluation standard of that specialist. The results proved that it is possible to emulate, with reasonable reliability, the evaluation standard of specialists in the definition of environmental systems fragility, eliminating in this way, arbitrariness and subjectivity in the elaboration process of environmental fragility models. This work does not presuppose a new model, rather a methodology for the construction of models, using artificial neural networks, taking the first step in the search of new techniques, albeit feared by the geographers, however, necessary for the evolution of geographic science.
3

Modelos de previsão de preços aplicados aos contratos futuros agropecuários / Price forecasting models applied to agricultural future contracts

Bressan, Aureliano Angel 04 February 2001 (has links)
Submitted by Nathália Faria da Silva (nathaliafsilva.ufv@gmail.com) on 2017-07-04T17:58:58Z No. of bitstreams: 1 texto completo.pdf: 538594 bytes, checksum: 6093b581fc640e6c06d18048d80424f2 (MD5) / Made available in DSpace on 2017-07-04T17:58:58Z (GMT). No. of bitstreams: 1 texto completo.pdf: 538594 bytes, checksum: 6093b581fc640e6c06d18048d80424f2 (MD5) Previous issue date: 2001-02-04 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Esta pesquisa trata da aplicabilidade de modelos de previsão de séries temporais como ferramenta de decisão de compra e venda de contratos futuros da BM&F, em datas próximas ao vencimento. Para fins empíricos, foram consideradas as commodities boi gordo, café e soja. O objetivo geral foi verificar qual modelo fornece as previsões mais precisas para cada série de preços considerada no mercado físico. O objetivo específico foi calcular os retornos médios de cada modelo em operações de compra e venda nos mercados futuros das commodities analisadas, de modo a fornecer um indicativo do potencial ou da limitação de cada um deles. Os modelos estudados foram os de Box & Jenkins (ARIMA), Redes Neurais, Estruturais e Bayesianos. Os dados utilizados corresponderam às cotações semanais de boi gordo, café e soja nos mercados físico e futuro. A discussão se baseou na hipótese de que esses modelos são instrumentos viáveis de auxílio à tomada de decisão por parte de agentes ligados ao agronegócio, reduzindo a incerteza quanto ao comportamento futuro dos preços. A análise foi conduzida, primeiramente, em termos de Erro Percentual de Previsão da série de preços do mercado físico para, em seguida, verificar os retornos em simulações de compra e venda de contratos futuros de cada produto, utilizando-se o Índice Sharpe, além do viés positivo ou negativo dessa média, através da estatística de simetria e do grau de dispersão dos retornos, medido pela curtose da distribuição destes. De modo geral, os resultados indicaram que: a) os modelos de previsão de séries temporais captam, de modo coerente, o padrão de comportamento dos preços analisados; b) há, contudo, diferenças de desempenho preditivo entre os modelos e entre cada mercado; e c) os retornos financeiros se mostraram positivos na maioria dos contratos analisados, indicando o potencial de utilização desses modelos em negociações de contratos para datas próximas ao vencimento, com destaque para operações fundamentadas nas previsões dos Modelos ARIMA e Estruturais. / This research deals with the usefulness of times series forecast models as a tool for buy and sell decisions of the brazilian BM&F future contracts, in dates nearby the expiration. For this purpose, the commodities considered were live cattle, coffee and soybeans. The general objective is to verify which model generates the most accurate forecasts for each price series of the considered commodities in the spot market. The specific objective is to calculate the medium returns of each model in buy and sell operations in each market of the analyzed commodities, in way to provide an indication of the potentials or limitations of each one.The models considered are the Box & Jenkins (ARIMA), Neural Networks, Structural and Bayesians time series models. The data utilized correspond to the weekly quotations of live cattle, coffee and soybeans in the spot and futures markets. The discussion is based on the hypothesis that those models are viable instruments to support decisions of economic agents participating in the agribussiness, reducing the uncertainty related to the future behavior of the spot prices. The analysis is carried out, firstly, in terms of Percentage Forecast Error for the price series in the spot market. Then, it verifies the returns in simulated buy and sell of future contracts of each product, using the Sharpe Index as a tool for comparsion, as well as the symmetry and kurtosis statistics. In general, the results indicate that: a) the time series forecast models capture coherently the pattern of the analyzed prices; b) there is, however, differences of forecast performance among the models and markets; and c) the financial returns are shown positive in most of the analyzed contracts, indicating the potential use of those models in negotiations of contracts for dates close to the expiration, with prominence for operations based in the forecasts of the ARIMA and Structural models.

Page generated in 0.1137 seconds