Spelling suggestions: "subject:"modelos dde markov oculta"" "subject:"modelos dee markov oculta""
1 |
Predicción de crimen usando modelos de markov ocultosObrecht Ihl, Paz January 2014 (has links)
Magíster en Gestión de Operaciones / Ingeniera Civil Industrial / La prevención del crimen ha ganado cada vez más espacio e importancia entre las políticas públicas en seguridad ciudadana, tanto en Chile como en el mundo. Durante la investigación realizada en este trabajo, se desarrolla un modelo para predecir los crímenes sobre una ciudad, que incluye el efecto de intervenciones preventivas y que permite además estudiar el fenómeno de desplazamiento que se le atribuye a este tipo de medidas. Ambos aspectos incluidos rara vez en los modelos de predicción revisados en la literatura. La estructura utilizada corresponde a un modelo de Markov oculto, donde el atractivo de un lugar para cometer un tipo específico de crimen se considera oculto y se estudia a través de el registro de crímenes observados en dicho lugar, considerando el efecto que intervenciones policiales podrían tener.
De manera de demostrar el tipo de información y uso que se puede hacer del modelo desarrollado, se aplicó éste en un caso de estudio. Los datos de los crímenes y vigilancia policial utilizados se obtuvieron mediante un simulador del crimen sobre una ciudad ficticia. El modelo estimado, permitió comparar el efecto de la vigilancia en el lugar donde es ubicada, así como en las áreas aledañas, según el atractivo de cada lugar. Encontrándose que las celdas más atractivas son más susceptibles a esta vigilancia, tanto en la reducción de crímenes esperados al posicionarse un vigilante en un lugar, como en el aumento de la tasa de crímenes cuando un policía es ubicado en lugares aledaños.
A partir de las matrices de transición se clasificaron las unidades de estudio, que componen la ciudad virtual, según su potencial para pasar a un estado de alta atractividad. Donde le grupo más numeroso corresponde al de celdas, de Bajo y Mediano Potencial, que permanecen en el mínimo estado de atractividad, reportando pocos crímenes en el lugar. Por el contrario, aquellas celdas, de Alto Potencial, que tienen probabilidades significativas de llegar y permanecer en estados de alta atractividad es el grupo menos numeroso, y el que además suele concentrar los crímenes. Esto se alinea con lo que sugiere la literatura respecto a unos pocos lugares concentrado la mayoría de los crímenes.
Para validar el modelo se comparó su ajuste y predicciones con los obtenidos de otros cuatro modelos con diferentes especificaciones y estructuras (HMM Homogéneo, Clases Latentes, Regresión de Poisson y Persistencia), obteniendo mejores tasas de aciertos en la predicción de los crímenes futuros, de alrededor del 97%. Además el modelo destaca prediciendo los crímenes de las celdas de Alto Potencial, respecto a los modelos alternativos, alcanzando tasas de aciertos de 97% en comparación con las obtenidas por los otros cuatro modelos: 78%, 92%, 48% y 34% respectivamente. Se concluye además, en el experimento, que la inclusión del efecto de la policía permite capturar mejor el fenómeno delictivo, mejorando el desempeño al predecir el número de crímenes.
Finalmente, en relación a los objetivos planteados en este trabajo, se puede concluir que el modelo HMM desarrollado logra incorporar de forma efectiva los dos atributos que se deseaban estudiar en el fenómeno delictivo: considerar la atractividad de forma dinámica,actualizándose período a período, e incluir el efecto de la vigilancia en la predicción.
|
2 |
Heterogeneidad de estados en Hidden Markov modelsPadilla Pérez, Nicolás January 2014 (has links)
Magíster en Gestión de Operaciones / Ingeniero Civil Industrial / Hidden Markov models (HMM) han sido ampliamente usados para modelar comportamientos dinámicos tales como atención del consumidor, navegación en internet, relación con el cliente, elección de productos y prescripción de medicamentos por parte de los médicos. Usualmente, cuando se estima un HMM simultáneamente para todos los clientes, los parámetros del modelo son estimados asumiendo el mismo número de estados ocultos para cada cliente. Esta tesis busca estudiar la validez de este supuesto identificando si existe un potencial sesgo en la estimación cuando existe heterogeneidad en el número de estados. Para estudiar el potencial sesgo se realiza un extenso ejercicio de simulación de Monte Carlo.
En particular se estudia: a) si existe o no sesgo en la estimación de parámetros, b) qué factores aumentan o disminuyen el sesgo, y c) qué métodos pueden ser usados para estimar correctamente el modelo cuando existe heterogeneidad en el número de estados. En el ejercicio de simulación, se generan datos utilizando un HMM con dos estados para el 50% de clientes y un HMM con tres estados para el 50% restante. Luego, se utiliza un procedimiento MCMC jerárquico Bayesiano para estimar los parámetros de un HMM con igual número de estados para todos los clientes.
En cuanto a la existencia de sesgo, los resultados muestran que los parámetros a nivel individual son recuperados correctamente, sin embargo los parámetros a nivel agregado correspondientes a la distribución de heterogeneidad de los parámetros individuales deben ser reportados cuidadosamente. Esta dificultad es generada por la mezcla de dos segmentos de clientes con distinto comportamiento.
En cuanto los factores que afectan el sesgo, los resultados muestran que: 1) cuando la proporción de clientes con dos estados aumenta, el sesgo de los resultados agregados también aumenta; 2) cuando se incorpora heterogeneidad en las probabilidades condicionales, se generan estados duplicados para los clientes con 2 estados y los estados no representan lo mismo para todos los clientes, incrementando el sesgo a nivel agregado; y 3) cuando el intercepto de las probabilidades condicionales es heterogéneo, incorporar variables exógenas puede ayudar a identificar los estados igualmente para todos los clientes.
Para reducir los problemas mencionados se proponen dos enfoques. Primero, usar una mezcla de Gaussianas como distribución a priori para capturar heterogeneidad multimodal, y segundo usar un modelo de clase latente con HMMs de distintos número de estados para cada clase. El primer modelo ayuda en representar de mejor forma los resultados agregados. Sin embargo, el modelo no evita que existan estados duplicados para los clientes con menos estados. El segundo modelo captura la heterogeneidad en el número de estados, identificando correctamente el comportamiento a nivel agregado y evitando estados duplicados para clientes con dos estados.
Finalmente, esta tesis muestra que en la mayoría de los casos estudiados, el supuesto de un número fijo de estados no genera sesgo a nivel individual cuando se incorpora heterogeneidad. Esto ayuda a mejorar la estimación, sin embargo se deben tomar precauciones al realizar conclusiones usando los resultados agregados.
|
3 |
Estima??o param?trica e n?o-param?trica em modelos de markov ocultosMedeiros, Francisco Mois?s C?ndido de 10 February 2010 (has links)
Made available in DSpace on 2015-03-03T15:22:32Z (GMT). No. of bitstreams: 1
FranciscoMCM.pdf: 1391370 bytes, checksum: 2bdc2511202e3397ea85e69a321f5847 (MD5)
Previous issue date: 2010-02-10 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In this work we study the Hidden Markov Models with finite as well as general state space. In the finite case, the forward and backward algorithms are considered and the probability of a given observed sequence is computed. Next, we use the EM algorithm to
estimate the model parameters. In the general case, the kernel estimators are used and to built a sequence of estimators that converge in L1-norm to the density function of the observable process / Neste trabalho estudamos os modelos de Markov ocultos tanto em espa?o de estados finito quanto em espa?o de estados geral. No caso discreto, estudamos os algoritmos para frente e para tr?s para determinar a probabilidade da sequ?ncia observada e, em seguida, estimamos os par?metros do modelo via algoritmo EM. No caso geral, estudamos os estimadores do tipo n?cleo e os utilizamos para conseguir uma sequ?ncia de estimadores que converge na norma L1 para a fun??o densidade do processo observado
|
Page generated in 0.0989 seconds