• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

<strong>THE  EVALUATION OF MODULAR MANUFACTURING IN CONTROLLED ENVIRONMENT AGRICULTURE FOR  REPURPOSED URBAN SPACES</strong>

Mikael Borge (16648569) 01 August 2023 (has links)
<p>This thesis aims to evaluate a Modular Manufacturing (MM) technical approach to Controlled Environment Agriculture (CEA) for cultivating plant food crops in a repurposed urban space. The specific approach was to fit a modular hydroponic CEA system into an insulated cooler box with environmental control to act as a micro plant factory. The feasibility of the approach was evaluated and a benchmark comparison between repurposed urban space and controlled lab environments was produced.</p><p>Possessing accessibility and affordability to desired quantitatively and nutritious food is a pillar for a healthy lifestyle, yet food insecurity is a growing problem worldwide, in industrial as well as industrializing nations. Food insecurity is defined as “lacking the ability to meet nutritional needs at one or multiple times during the year.” [1] Though Developing countries tend to score poorly on the Food Security Index [2], the issue is common in developed countries as well, where countries like the U.S. Possess a household food insecurity rate of above 10% [1]. Especially, subgroups of the urban population and university students in developed countries are represented at a higher rate concerning food insecurity [3], due to food insecurity’s dependence on socioeconomic factors such as purchasing power and local accessibility.</p><p>Bringing production close to the consumers or to the Point-of-Need (PoN) would be a valuable tool for supplementing traditional food crop production and increasing access to high-quality food for groups exposed to food insecurity. This is especially attractive in densely populated areas and college campuses, where real estate is prime. Bringing production to the PoN does however carry certain challenges, such as severe resource restrictions, which are not present in traditional agricultural production in rural areas where there is vast access to land, water, and plenty of sunlight. Pushing the boundaries of CEA research, technology, and application areas will be crucial for the utilization of nontraditional agricultural land, agricultural resource optimization, and food security improvements in difficult-to-farm environments to facilitate delivery to PoN.</p><p><br></p><p><b>Salient outcomes:</b> The salient outcomes of this research were that a MM platform was proven to be feasible for CEA cultivation of food crops in a repurposed urban space as well as a controlled location. Specimens cultivated in a repurposed urban space were shown to have a lower growth rate compared to a controlled location, but the important comparison is to the currently nonexistent productivity in such spaces.</p><p><b>Intellectual merit:</b> The MM CEA platform was designed, prototyped, and tested using components-of-the-shelf (COTS) as recommended by frugal engineering methodology [4]. This manufacturing platform was engineered for a case study for repurposing unused “garage space” on the college campus at Purdue University. The platform was further used for a set of studies to evaluate the feasibility of the MM platform and the production efficiency of the platform not only in a repurposed urban space but also across harsh environments across winter-spring seasons. Romaine lettuce cultivars were used as a sample plant for winter and spring studies due to their property as a popular consumable, nutritious, and relatively short growth time for better productivity. The following research issues were addressed by this research: (1) design of a modular manufacturing module; (2) testing of the module in the indoor controlled lab environment; (3) advancing design based on findings in no.2; (4) CEA testing of the integration of multiple modules (two and water supply) in the Purdue University garage (living lab) and the indoor lab environment.</p><p><b>Broader Impact:</b> The results from this research could serve as a proof-of-concept to validate the feasibility of functional modules and their integration in scaled-up urban food crop production using repurposed space. This case study especially could open opportunities for college campuses across the US (and the world), to repurpose multi-storied garage spaces for healthy food production at PoN, for example, accessible to students’ dorms and cafeterias. This MM model could further be extended to other forms of urban areas for food security and production in communities in the vicinity of garages and similar spaces in form. Utilizing unrecognized space resources in an otherwise resource-restricted environment could be the supplemental production needed to fight food desertification and insecurity in urban locations. Bringing food production to the PoN would increase the accessibility of high-quality and nutritious fresh produce, improving conditions for localized food insecurity problems.</p>
2

Fonction psychologique et sociale du collectif pour la santé au travail : le cas de l’activité d’opérateurs de montage automobile / Psychological and social function of a peer group to promote health at work : a case study of operators' activity in car industry

Quillerou-Grivot, Edwige 07 December 2011 (has links)
Cette thèse s’intéresse au travail collectif d’opérateurs de montage travaillant en « îlot de production » et à la construction de la santé dans ce contexte de transformations du monde ouvrier. Lors d’une intervention dans une entreprise de logistique, dernier maillon de la chaîne de sous-traitance de l’industrie automobile, nous avons proposé d’installer un cadre clinique de l’activité en psychologie du travail. Ainsi, les opérateurs volontaires ont pu découvrir combien les expériences des autres - même ceux croisés ponctuellement de par le turn-over des intérimaires - et les débats autour des façons de faire des collègues, pouvaient devenir une ressource pour leur propre travail. Malgré la difficulté de maintenir un travail de co-analyse avec un fort turn-over, les opérateurs ont aussi pris conscience de la fonction sociale de leur collectif au sein de l’entreprise, lors du dernier comité de pilotage de notre intervention. Ce double processus psychologique et social de la fonction du collectif chez les opérateurs leur permet de créer de nouvelles manières de transformer le travail, participant ainsi au développement de leur santé. / This thesis speaks about collective work of the operators of assembly in modular manufacturing unit and health building in this context of industrial work transformations. During an intervention in a company of car logistics, the last link of the chain of subcontracting at car industry, we proposed them to construct a clinical frame of activity in work psychology. So, volunteers’ operators were able to discover how much the experiences of the others - even those crossed punctually due to the turnover of the temporary workers - and the debates around the manners to make the other colleagues could become a resource for their own work. In spite of the difficulty to maintain a work of co-analysis with temporary operators, the operators could also became aware of their collective social function, during the last steering committee of our intervention. This double psychological and social process of the collective function at the operators allows creating new ways to transform their work, so participating in the development of their health.
3

MiniPharm: A Miniaturized Pharmaceutical Process Development and Manufacturing Platform

Jaron ShaRard Mackey (14230133) 07 December 2022 (has links)
<p>  </p> <p>In the pharmaceutical industry, special care must be taken by companies to guarantee high quality medications that are free from byproducts and impurities. The development process involves various considerations including solvent selection, solubility screening, unit operation selection, environmental, and health impact evaluations. Traditionally, pharmaceutical manufacturing consisted of large, centralized facilities to meet pharmaceutical demands; however, there has been a recent shift toward distributed manufacturing. With distributed manufacturing platforms, rapidly changing supply chain needs can be met regionally in addition to supplying small-volume medications and personalized medicines to hospitals and pharmacies. To produce quality pharmaceuticals, distributed manufacturing platforms should integrate digital design, novel unit operations, and process analytical technology (PAT) tools for quality monitoring and control. In this dissertation, a process design and development framework is proposed and implemented for a small-scale pharmaceutical manufacturing platform: MiniPharm.</p> <p>Various approaches to process design are detailed in this dissertation, which include heuristic-based and digital or simulation-based design. For heuristic-based design, the knowledge of the researchers was utilized to provide unit operation evaluation and screening of process alternatives. In cases when unit operations were highly complex, digital or simulation-based design was utilized to conduct sensitivity analyses and simulation-based design of experiments. With the implementation of simulation-based design, material and time needs were reduced while gaining knowledge about the system. The integration of various unit operations comes with increased understanding of start-up dynamics and operational constraints. What was found to be the most successful approach was the combination of heuristics and digital design to combine researcher knowledge and experience with the information gained from process modeling and simulation to create process alternatives that utilized system dynamics to reach desired process outcomes. </p> <p>Additionally, MiniPharm was used for process model development at the small-scale. Various software packages have been made commercially available that focus on production scale; however, models for small-scale operations are not typically implemented in these packages. Models for unit operations were fit with collected experimental data to estimate model parameters for small-scale synthesis, liquid-liquid extraction, and crystallization unit operations. The models were implemented to better capture the heat and mass transfer of the milli-fluidic scale platform, which consist of unit operations housed within microchannels. MATLAB was utilized for estimation of parameters such as kinetic rate constants and overall mass transfer coefficients. These parameters were used for design space determination and process disturbance simulation. The exploration of the impact of various process parameters on quality attributes helps researchers gain a deeper understanding about the manufacturing process and helps to demonstrate how to control the process. </p> <p>An important aspect of MiniPharm is the process development progress that has been demonstrated. With the construction of a modular and reconfigurable platform, various process alternatives can now be experimentally validated. The integration of unit operations operated at a decreased scale makes MiniPharm an example of process intensification. The implementation of integrated unit operations decreases handling time of intermediates and reduces the overall footprint for manufacturing. Designed to allow for increased flexibility of operation, perfluoroalkoxy alkane (PFA) tubing was used for synthesis and purification. With PFA tubing clean in place procedures can be implemented using continuous solvent flow or the low cost, PFA tubing can be replaced. The modular nature of the platform also allows for the investigation of individual unit operations for performance evaluation. </p> <p>Finally, a novel continuous solvent switch distillation unit operation was designed and constructed along with customized reactor and crystallizers for process alternative screening for the synthesis and purification of two compounds: Diphenhydramine hydrochloride and Lomustine. Diphenhydramine hydrochloride is a low-value, high volume allergy medication commonly found in Benadryl and Lomustine is a high-value, low volume cancer medication used to treat glioblastoma and Hodgkin Lymphoma. The production of the compounds demonstrated the flexibility of the manufacturing platform to produce both a generic and a specialty medication. A versatile platform is needed for distributed manufacturing because of quickly changing supply chain needs. Overall, this dissertation successfully demonstrates the process design, development, and simulation for small-scale manufacturing.</p>

Page generated in 0.0958 seconds