• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Architectural effects of block copolymer phase behaviour

Turner, Simon C. January 2000 (has links)
No description available.
2

Synthetic studies towards the zaragozic acids

Villalonga-Barber, Carolina January 2001 (has links)
No description available.
3

Molecular architecture and gelation phenomena in epoxide networks

Smith, Mark Edward January 1993 (has links)
No description available.
4

Stoichiometric Biology of the Synapse / Stoichiometric Biology of the Synapse

Wilhelm, Benjamin 12 April 2013 (has links)
No description available.
5

Modification of Behavior of Elastin-like Polypeptides by Changing Molecular Architecture

Ghoorchian, Ali 11 May 2012 (has links)
No description available.
6

Estudo da arquitetura molecular de filmes layer-by-layer de ftalocianina tetrasulfonada de cobre

Storti, Felipe Chagas [UNESP] 19 November 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:30Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-11-19Bitstream added on 2014-06-13T18:09:41Z : No. of bitstreams: 1 storti_fc_me_bauru.pdf: 1104117 bytes, checksum: f3374b86db01b726a613c1cc13d060e9 (MD5) / Nesta dissertação é apresentado um estudo envolvendo a arquitetura molecular (crescimento controlado, morfologia e organização molecular) de filmes Layer-by-Layer (LbL) contendo ftalocianina tetrasulfonada de cobre (CuTsPc). Inicialmente foram realizados estudos sobre a cinética de crescimento desses filmes para determinação do tempo de adsorção do material no substrato. Uma vez determinado este tempo, filme LbL foram fabricados utilizando soluções catiônica de poli(alilamina) hidroclorada - PAH) e aniônica de CuTsPc. Os filmes de PAH/CuTsPc foram produzidos de forma manual e utilizando um braço mecânico em valores de pHs 2,5; 5,5 e 8,5 sendo então caracterizados por espectroscopia eletrônica via absorção na região do ultravioleta-visível (UV-Vis), espectroscopia vibracional via espalhamento Raman e absorção na região do infravermelho com transformadora de Fourier (FTIR) e microscopias óptica e força atômica (AF,A). A espectroscopia de absorção na região do UV-Vis foi utilizada para acompanhar o crescimento do filme LbL assim como investigar a presença de agregados. A técnica de FTIR permitiu investigar as interações entre o PAH e a CuTsPc e determinar a organização molecular comparando filme LbL e cast. O acoplamento entre microscópio óptico e espectrógrafo Raman (técnica microRaman) possibilitou analisar a morfologia do filme LbL em escala micrométrica combinando informações ópticas e químicas. A morfologia do filme LbL em escala nanométrica foi investigada utilizando-se AFM. Foi observado que os filmes crescidos mecanicamente são mais espessos em relação aos crescidos manualmente, além de apresentarem maior rugosidade. Ainda em termos morfológicos, os filmes crescidos mecanicamente apresentam uma maior quantidade de agregados, porém, menores em termos de diâmetro médio, tanto em escala nano como micrométrica... / This dissertation presents a study involving the molecular architecture (controlled growth, morphology, and molecular organization) of layer-by-layer (LbL) films containing copper phthalocyanine tetrasulfonated (CuTsPc). Initially, the studies were performed on the kinetics of growth of these films to determine the time of adsorption of the material on the substrate. Once determined this time, LbL films were produced by using solutions of cationic poly (hydrochloric alilamina - PAH) and anionic CuTsPc. The films of PAH / CuTsPc were produced either manually or using a mechanical arm in pH values of 2.5, 5.5, and 8.5, and then characterized by electron spectroscopy via absorption in the ultraviolet-visible (UV-Vis), vibrational spectroscopy by Raman scattering and absorption in the infrared region with Fourier transform infrared (FTIR) and optical microscopy and atomic force microscopy (AFM). The absorption spectroscopy in the UV-Vis was used to follow the growth of the LbL film and to investigate the presence of aggregates. The FTIR technique allowed investigatin the interactions between the PAH and CuTsPc and determining the molecular organization comparing LbL films and cast. The coupling between optical microscope and Raman spectrograph (micro-Raman technique) allowed analyzing the morphology of the LbL film at micrometric scale combining optical and chemical information. The morphology of the LbL film at nanometer scale was investigated by using AFM. It was observed that the films grown mechanically are thicker in relation to grown manually and present greater roughness. Also in morphological terms, the films grown mechanically have an increased number of aggregates, however, smaller in terms of average diameter, at nano and micrometric scales. It was found that the pH is a key parameter to induce the formation of molecular clusters. For instance, more homogeneous LbL films in term... (Complete abstract click electronic access below)
7

Estudo da arquitetura molecular de filmes layer-by-layer de ftalocianina tetrasulfonada de cobre /

Storti, Felipe Chagas. January 2008 (has links)
Orientador: Carlos José Leopoldo Constantino / Banca: Marystela Ferreira / Banca: Luciana Gaffo / O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp / Resumo: Nesta dissertação é apresentado um estudo envolvendo a arquitetura molecular (crescimento controlado, morfologia e organização molecular) de filmes Layer-by-Layer (LbL) contendo ftalocianina tetrasulfonada de cobre (CuTsPc). Inicialmente foram realizados estudos sobre a cinética de crescimento desses filmes para determinação do tempo de adsorção do material no substrato. Uma vez determinado este tempo, filme LbL foram fabricados utilizando soluções catiônica de poli(alilamina) hidroclorada - PAH) e aniônica de CuTsPc. Os filmes de PAH/CuTsPc foram produzidos de forma manual e utilizando um braço mecânico em valores de pHs 2,5; 5,5 e 8,5 sendo então caracterizados por espectroscopia eletrônica via absorção na região do ultravioleta-visível (UV-Vis), espectroscopia vibracional via espalhamento Raman e absorção na região do infravermelho com transformadora de Fourier (FTIR) e microscopias óptica e força atômica (AF,A). A espectroscopia de absorção na região do UV-Vis foi utilizada para acompanhar o crescimento do filme LbL assim como investigar a presença de agregados. A técnica de FTIR permitiu investigar as interações entre o PAH e a CuTsPc e determinar a organização molecular comparando filme LbL e cast. O acoplamento entre microscópio óptico e espectrógrafo Raman (técnica microRaman) possibilitou analisar a morfologia do filme LbL em escala micrométrica combinando informações ópticas e químicas. A morfologia do filme LbL em escala nanométrica foi investigada utilizando-se AFM. Foi observado que os filmes crescidos mecanicamente são mais espessos em relação aos crescidos manualmente, além de apresentarem maior rugosidade. Ainda em termos morfológicos, os filmes crescidos mecanicamente apresentam uma maior quantidade de agregados, porém, menores em termos de "diâmetro médio", tanto em escala nano como micrométrica... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This dissertation presents a study involving the molecular architecture (controlled growth, morphology, and molecular organization) of layer-by-layer (LbL) films containing copper phthalocyanine tetrasulfonated (CuTsPc). Initially, the studies were performed on the kinetics of growth of these films to determine the time of adsorption of the material on the substrate. Once determined this time, LbL films were produced by using solutions of cationic poly (hydrochloric alilamina - PAH) and anionic CuTsPc. The films of PAH / CuTsPc were produced either manually or using a mechanical arm in pH values of 2.5, 5.5, and 8.5, and then characterized by electron spectroscopy via absorption in the ultraviolet-visible (UV-Vis), vibrational spectroscopy by Raman scattering and absorption in the infrared region with Fourier transform infrared (FTIR) and optical microscopy and atomic force microscopy (AFM). The absorption spectroscopy in the UV-Vis was used to follow the growth of the LbL film and to investigate the presence of aggregates. The FTIR technique allowed investigatin the interactions between the PAH and CuTsPc and determining the molecular organization comparing LbL films and cast. The coupling between optical microscope and Raman spectrograph (micro-Raman technique) allowed analyzing the morphology of the LbL film at micrometric scale combining optical and chemical information. The morphology of the LbL film at nanometer scale was investigated by using AFM. It was observed that the films grown mechanically are thicker in relation to grown manually and present greater roughness. Also in morphological terms, the films grown mechanically have an increased number of aggregates, however, smaller in terms of "average diameter", at nano and micrometric scales. It was found that the pH is a key parameter to induce the formation of molecular clusters. For instance, more homogeneous LbL films in term... (Complete abstract click electronic access below) / Mestre
8

Fabricação e caracterização estrutural de filmes evaporados de ftalocianinas /

Zanfolim, Antonio Aparecido. January 2009 (has links)
Orientador: Carlos José Leopoldo Constantino / Banca: José Alberto Giacometti / Banca: Henrique de Santana / Banca: Eduardo René Perez Gonzalez / Banca: Marcelo Mulato / Banca: Rogério Pinto Mota / O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp / Resumo: Neste trabalho foram preparados filmes finos de ftalocianinas de zinco (ZnPc) e de níquel (NiPc) através da técnica de evaporação térmica à vácuo (PVD - physical vapor deposition) em diversas espessuras e em escala nanométrica com o objetivo de determinar a arquitetura molecular destes filmes bem como suas propriedades ópticas e elétricas. Em última análise buscam-se gerar subsídios para as possíveis aplicações, especialmente dispositivos eletrônicos a base de semicondutores orgânicos e sensores de gás. A ZnPc e a NiPc em pó foram caracterizadas utilizando-se as técnicas de termogravimetria (TG), calorimetria exploratória diferencial (DSC) e os filmes PVD por espectroscopias de absorção no ultravioleta-visível (UV-vis), no infravermelho com transformada de Fourier (FTIR), espalhamento Raman, difração de raios-X, microscopias óptica e de força atômica (AFM) e caracterização elétrica cc (tensão x corrente). Os resultados mostraram que é possível a fabricação de filmes PVD de ZnPc e NiPc, uma vez que estas moléculas não são termicamente degradadas durante o processo de evaporação térmica a vácuo, e que o crescimento dos filmes pode ser controlado em escala nanométrica para ambos os materiais. Em termos estruturais, os filmes PVD de ZnPc e NiPc são cristalinos (forma α) e possuem as moléculas arranjado-se na forma de agregados e monômetros e ordenadas com o anel macrociclo inclinado em relação à superfície do substrato. Tais agregados podem ser vistos em escala nanométrica, porém, em escala micrométrica os filmes apresentam-se morfologicamente homogêneos. Em relação às propriedades ópticas e elétricas, observou-se que ambos os filmes PVD absorvem na região do visível com a ZnPc apresentando fotoluminescência quando irradiado com laser 785 nm. A condutividade elétrica é de 1,2x'10 POT. -10' S/m para a ZnPc e de 72x'10 POT... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this work thin films of phthalocyanines of zinc (ZnPc) and nickel (NiPc) were fabricated through the vacuum thermal evaporation technique (PVD - physical vapor deposition) for different thicknesses at nanometric scale with the objective of determining the molecular architecture of these films as well as their optical and electrical properties. The final idea is to generate subsidies for applications of these films in electronic devices based on organic semiconductors and gas sensors. The PVD films were characterized using thermogravimetry (TG), differential scanning calorimetry (DSC), ultraviolet-visible (UV-vis) and Fourier transform infrared (FTIR) absorption spectroscopies, Raman scattering, X-ray diffraction, optical and atomic force (AFM) microscopies, and electrical characterization (tension x current dc). The results showed that the fabrication of ZnPc and NiPc films is possible since these molecules are not thermally degraded during the process of vacuum thermal evaporation and that the growth of the films can be controlled at nanometric scale for both materials. Structurally, the PVD films of ZnPc and NiPc possess the molecules organized with the macrocycle ring tilted in relation to the substrate surface. They are crystalline (α form) and possess molecular aggregates in the form of dimmers or higher order of aggregates and monomers. Such aggregates can be seen at nanometric scale, however, at micrometric scale the films are morphologically homogeneous. In relation to the optical and electrical properties, it was observed that boh PVD films absorb in the visible region with the ZnPc presenting photoluminescence when irradiated with the 785 nm laser line. The electric conductivity at 1,2x'10 POT. -10' S/m for ZnPc and 72x'10 POT. -10' S/m for NiPc. They also presented photoconductivity with the ZnPc more photoconductor than NiPc. Finally, after thermal treatment... (Complete abstract click electronic access below) / Doutor
9

Fabricação e caracterização estrutural de filmes evaporados de ftalocianinas

Zanfolim, Antonio Aparecido [UNESP] 26 June 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:51Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-06-26Bitstream added on 2014-06-13T19:43:38Z : No. of bitstreams: 1 zanfolim_aa_dr_bauru.pdf: 2078904 bytes, checksum: 89fecc6406c0fe251fffb9f3101d20dd (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho foram preparados filmes finos de ftalocianinas de zinco (ZnPc) e de níquel (NiPc) através da técnica de evaporação térmica à vácuo (PVD - physical vapor deposition) em diversas espessuras e em escala nanométrica com o objetivo de determinar a arquitetura molecular destes filmes bem como suas propriedades ópticas e elétricas. Em última análise buscam-se gerar subsídios para as possíveis aplicações, especialmente dispositivos eletrônicos a base de semicondutores orgânicos e sensores de gás. A ZnPc e a NiPc em pó foram caracterizadas utilizando-se as técnicas de termogravimetria (TG), calorimetria exploratória diferencial (DSC) e os filmes PVD por espectroscopias de absorção no ultravioleta-visível (UV-vis), no infravermelho com transformada de Fourier (FTIR), espalhamento Raman, difração de raios-X, microscopias óptica e de força atômica (AFM) e caracterização elétrica cc (tensão x corrente). Os resultados mostraram que é possível a fabricação de filmes PVD de ZnPc e NiPc, uma vez que estas moléculas não são termicamente degradadas durante o processo de evaporação térmica a vácuo, e que o crescimento dos filmes pode ser controlado em escala nanométrica para ambos os materiais. Em termos estruturais, os filmes PVD de ZnPc e NiPc são cristalinos (forma α) e possuem as moléculas arranjado-se na forma de agregados e monômetros e ordenadas com o anel macrociclo inclinado em relação à superfície do substrato. Tais agregados podem ser vistos em escala nanométrica, porém, em escala micrométrica os filmes apresentam-se morfologicamente homogêneos. Em relação às propriedades ópticas e elétricas, observou-se que ambos os filmes PVD absorvem na região do visível com a ZnPc apresentando fotoluminescência quando irradiado com laser 785 nm. A condutividade elétrica é de 1,2x'10 POT. -10' S/m para a ZnPc e de 72x'10 POT... / In this work thin films of phthalocyanines of zinc (ZnPc) and nickel (NiPc) were fabricated through the vacuum thermal evaporation technique (PVD - physical vapor deposition) for different thicknesses at nanometric scale with the objective of determining the molecular architecture of these films as well as their optical and electrical properties. The final idea is to generate subsidies for applications of these films in electronic devices based on organic semiconductors and gas sensors. The PVD films were characterized using thermogravimetry (TG), differential scanning calorimetry (DSC), ultraviolet-visible (UV-vis) and Fourier transform infrared (FTIR) absorption spectroscopies, Raman scattering, X-ray diffraction, optical and atomic force (AFM) microscopies, and electrical characterization (tension x current dc). The results showed that the fabrication of ZnPc and NiPc films is possible since these molecules are not thermally degraded during the process of vacuum thermal evaporation and that the growth of the films can be controlled at nanometric scale for both materials. Structurally, the PVD films of ZnPc and NiPc possess the molecules organized with the macrocycle ring tilted in relation to the substrate surface. They are crystalline (α form) and possess molecular aggregates in the form of dimmers or higher order of aggregates and monomers. Such aggregates can be seen at nanometric scale, however, at micrometric scale the films are morphologically homogeneous. In relation to the optical and electrical properties, it was observed that boh PVD films absorb in the visible region with the ZnPc presenting photoluminescence when irradiated with the 785 nm laser line. The electric conductivity at 1,2x'10 POT. -10' S/m for ZnPc and 72x'10 POT. -10' S/m for NiPc. They also presented photoconductivity with the ZnPc more photoconductor than NiPc. Finally, after thermal treatment... (Complete abstract click electronic access below)
10

Self-Selection Of Discrete Molecular Architectures In Coordination-Driven Self-Assembly

Bar, Arun Kumar 05 1900 (has links) (PDF)
Self–assembly has long been attracting chemists’ attention because it can yield fascinating supramolecular architectures in a single step. More precisely, metal–ligand coordination–driven self–assembly has stood out as an efficient methodology in this paradigm due to simple design principle and high predictability of the final molecular architectures. Moreover, one can envisage hierarchical nanoscopic molecular architectures with a vast range of size, shape and functionality via this methodology. Two–component self–assembly (involving one type of donor and one type of acceptor) is relatively easy to monitor and a widely used protocol. Whereas, multicomponent self–assembly (involving more than one types of donors/or acceptors) is too complex due to the possibility of formation of several products. The prime advantage of multicomponent self–assembly lies in one–pot construction of topologically complicated multifunctional architectures. Template– induced multicomponent self–assembly of discrete architectures is recently investigated to some extent. But, template–free multicomponent self–assembly of discrete architectures is rare in the literature. Physico–chemical property of a self–assembled product is coded in the functional groups present in its precursor building units. Functional supramolecular architectures have important applications in many potential fields such as chemosensing, drug delivery, supramolecular catalysis, etc. Porphyrin, pyrazole, imidazole, etc. functionalized organic molecules are hydrophilic as well as hydrophobic in nature. Introduction of such functionality in building units can lead to amphiphilic supramolecular complexes. Therefore, such complexes can be employed as hosts for versatile guests, or as molecular reactors for various chemical reactions. In general, counter ions block the cavity of ionic molecular architectures. Thus, when ionic molecular architectures are employed as hosts, they cannot fully provide their cavity towards guest molecules. In contrast, neutral molecular complexes are expected to be better hosts. It is well known that alkenyl/alkynyl heavy metal complexes exhibit efficient chemoluminescence due to facile metal to ligand charge transfer (MLCT). Hence, such complexes can be employed as efficient chemosensors towards the detection of electron deficient molecules such as nitroaromatics which are the chemical signatures of many powerful explosives. In these regards, a considerable effort is being paid recently to design and construct various functional supramolecular architectures. Symmetry and rigidity of building units increase predictability of the final product in self– assembly. In this regard, symmetric; rigid Pd(II)/Pt(II)–based acceptors and polypyridyl donors are explored extensively in metal–ligand coordination–driven self–assembly. In contrast to rigidity, flexibility endows building units to adopt thermodynamically most stable conformer/architecture. Hence, same set of building units can render different conformers/architectures in presence of different templates for the sake of suitable host–guest interactions. Contrary to high symmetry, asymmetry in building units leads to molecular architectures with polar environments. But, due to the possibility of formation of several isomeric products from the self–assembly involving such building units, it is difficult to monitor the reaction and purify the products. Hence, designing appropriate synthetic routes which can lead to formation of single isomeric products possessing flexible/asymmetric building units is a challenge to synthetic chemists. Investigations incorporated in the present thesis are focused to design and construct various 2D/3D discrete supramolecular architectures employing self–assembly of mainly Pd(II)/Pt(II) acceptors with N/O donors. Elemental analyses, IR/NMR/UV–Vis/fluorescence/mass spectroscopy and single crystal X–ray diffraction analysis are among prime techniques employed for characterization of the reported architectures. For a few cases, powder X–ray diffraction (PXRD) analysis and density functional theory (DFT) calculations are also carried out. CHAPTER 1 of the thesis provides a brief general introduction to self–assembly and supramolecular chemistry. It emphasizes on the metal–ligand coordination–driven self–assembly approach towards the construction of a library of 2D/3D supramolecular architectures. CHAPTER 2 describes formation of a series of template–induced and template–free discrete 3D Pd(II) molecular prisms via multicomponent self–assembly. Because of the possibility of formation of several products, multicomponent self–assembly is difficult to monitor. For example, several molecular architectures are expected from a three–component self–assembly involving a 90° acceptor [ca. cis–blocked Pd(II)], a 120° tritopic donor [ca. benzene–1,3,5– tricaboxylate (tma)] and a 180° donor [ca. 4,4'–bipyridine (4,4'–bpy) or pyrazine (pz)]. Interestingly, treatment of cis–(tmen)Pd(NO3)2 [tmen = N,N,N′,N′–tetramethylethylenediamine] with 4,4'–bpy and K3tma in 6 : 3 : 2 molar ratio at room temperature resulted in mainly a nanoscopic molecular trigonal prism [{(tmen)Pd}6(bpy)3(tma)2](NO3)6 (1) with three 4,4'–bpy pillars, two tma caps and six cis–(tmen)Pd connectors (Scheme 1). Scheme 1: Schematic representation of the formation of multicomponent self–assembled molecular trigonal prisms 1, 2 and 3. Surprisingly, the same reaction in presence of benzene–1,3,5–tricaboxylic acid (H3tma) as guest yielded exclusively the guest–encapsulated analogous molecular prism [{(tmen)Pd}6(bpy)3(tma)2(H3tma)2](NO3)6 (2; Scheme 1). It is also presented how variation of steric crowding at connectors (acceptors) influenced final outcomes. Self–assembly of cis– (en)Pd(NO3)2 [en = ethylenediamine] with 4,4'–bpy and K3tma in 6 : 3 : 2 molar ratio at room temperature resulted in a triply interlocked nanoscopic 3D coordination cage [{(en)Pd}6(bpy)3(tma)2]2(NO3)12 (3; Scheme 1). It is also shown that above trend is followed even upon changing the pillar length from 4,4'–bpy to pz. Aromatic –stacking interactions amog tma caps as well as among 4,4'–bpy pillars provided considerable stability to interlocked archirecture 3. Steric crowding due to the methyl groups in cis–(tmen)Pd connectors hindered intercalation and hence led to non–interlocked architecture 1. As expected, similar self–assembly using moderately crowded acceptor cis–(pn)Pd(NO3)2 [pn = 1,2–diaminopropane] with same donors 4,4'–bpy and K3tma resulted in a mixture of analogous triply interlocked and non– interlocked architectures in solution though it was found to be only triply interlocked architecture in solid state. Interestingly, irrespective of the steric crowding of the blocking amines, self– assembly in presence of H3tma as guest preferred exclusive formation of guest–encapsulated prisms of type 2 (Scheme 1). This is due to considerable stabilazation via aromatic –stacking interactions amog tma caps and H3tma guests. Formation of guest–free discrete molecular prisms (such as 1) and triply interlocked coordination cages (such as 3) were confirmed by spectroscopic and single crystal X–ray diffraction analyses. Whereas, formation of guest– encapsulated discrete molecular prisms (such as 2) was established by DOSY, ROESY 2D NMR spectroscpic study in conjunction with energy optimized geometry analysis. CHAPTER 3 reports design and syntheses of a series of porphyrin functionalized nanoscopic 3D molecular open prisms. Self–assembly of a C4 –symmetric tetratopic donor with a 90° ditopic acceptor can, in principle, lead to several architectures such as trigonal; tetragonal; pentagonal; hexagonal; etc. open prisms, closed cube or 1D oligomers. Both of 1,5,10,15–tetrakis(4– 12 pyridyl)porphyrin (L) and 1,5,10,15–tetrakis(3–pyridyl)porphyrin (L) possess pseudo C4 – 1 symmetry. Surprisingly, treatment of Lwith the 90° ditopic acceptor cis–(dppf)Pt(OTf)2 [dppf = diphenylphosphinoferrocene, OTf = trifluoromethanesulphonate] yielded exclusively an 1 unprecedented [6 + 12] self–assembled hexagonal open prism [(dppf)12Pt12L6](OTf)24 (4; Scheme 2). Scheme 2: Schematic representation of formation of [6 + 12] self–assembled molecular hexagonal open prism 4 and its Zn(II) embedded complex 4a. 2 In contrast, [3 + 6] self–assembled trigonal open prisms are adopted upon self–assembly of Lwith Pd(II)–based 90° ditopic acceptors. These complexes show facile incorporation of Zn(II) ions into porphyrin N4 –pockets. Moreover, they incorporate high microporosity in solid state and they are amphiphilic in nature due to porphyrin functionality. One of the trigonal open prisms revealed its considerably high adsorbate–adsorbent affinity towards non–polar gas such as N2 and protic solvent vapors such as water, methanol and ethanol. Formation of hexagonal and trigonal open prisms is fully authenticated by spectroscopic and single crystal X–ray diffraction analyses. CHAPTER 4 describes design and synthesis of a pyrazole functionalized flexible donor (L) and its self–assembly towards the construction of three nanoscopic 3D supramolecular discrete cages 5–7 (Scheme 3). Scheme 3: Schematic representation of formation of [4 + 6] self–assembled molecular double–square 5 and [2 + 3] self–assembled molecular trigonal bipyramids 6–7. 3 Due to flexibility, Lcan adopt different conformations and hence several isomeric architectures 3 are expected upon self–assembly. For example, self–assembly of Lwith a rigid ditopic 90° acceptor can lead to trigonal bipyramid (TBP), double–square, adamantanoid or truncated 3 tetrahedron. Treatment of Lwith cis–(tmen)Pd(NO3)2 yielded a [4 + 6] self–assembled double–3 square [(tmen)6Pd6L4](NO3)12 (5; Scheme 3). Much to our surprise, replacement of cis– (tmen)Pd(NO3)2 with CuCl2 or AgOTf yielded [2 + 3] self–assembled molecular TBP 33 [Cu3Cl6L2] (6) or [Ag3L2](OTf)3 (7), respectively (Scheme 3). CHAPTER 5 presents study of self–assembly involving flexible asymmetric donors and rigid 4 symmetric 90° acceptors. Three ambidentate donors 5–pyrimidinecarboxylate (L), nicotinate–56 N–oxide (L) and isonicotinate–N–oxide (L) were employed in self–assembly with symmetric rigid 90° acceptors cis–(dppf)M(OTf)2 [M = Pd(II)/Pt(II)]. Due to flexibility and different 464 connectivity of these donors L–L, several linkage isomers are expected. Treatment of Lwith cis–(dppf)M(OTf)2 in 1 : 1 molar ratio resulted in exclusive formation of single linkage isomeric 4 [3 + 3] self–assembled symmetric molecular triangles [(dppf)3M3L3](OTf)3 (8: M = Pd and 9: M = Pt), where the donors connected to metal centers in head–to–tailfashion (Scheme 4). Similar 56 reactions of Land Lwith cis–(dppf)M(OTf)2 resulted in self–sorting of [2 + 2] self–assembled molecular rhomboids 10–13 (Scheme 4). Exclusive self–selection of single linkage isomeric architectures 8, 9, 10 and 12 was fully established by spectroscopic as well as single crystal X– ray diffraction analyses. Though we could not obtain suitable X–ray diffraction quality single crystals of 11 and 13, exclusive formation of single isomeric [2 + 2] self–assembled rhomboids 131 was established by multinuclear NMR (H and P) in conjunction with ESI–MS spectroscopic studies. Scheme 4: Schematic representation of formation of complexes 8–13. Part A of the CHAPTER 6 describes how two neutral organometallic mononuclear chelates are formed upon treatment of disodium fumarate (,–unsaturated dicarboxylate) with cis– (dppf)Pd/Pt(OTf)2 at ambient conditions. Reaction of 90acceptors cis–(dppf)Pd/Pt(OTf)2 with fumarate is expected to result in [4 + 4] self–sorted molecular squares/or [2 + 2] self–sorted molecular rhomboids (Scheme 5). To our surprise, the above reactions led to an unusual reduction of C–C double bond followed by concomitant formation of mononuclear chelates [M(dppf)(C4H4O4)] (M = Pd for 14 and Pt for 15) via coordination with one of the carboxylate oxygen atoms and –carbon to metal centers (Scheme 5). Scheme 5: Schematic representation of formation of the complexes 14–15. Part B of the CHAPTER 6 describes design and synthesis of a novel shape selective “clip” 1 shaped bimetallic Pd(II) acceptor Mand its self–assembly with disodium fumarate to construct a neutral tetrametallic Pd(II) supramolecular rectangle 16 (Scheme 6, left). Similarly, a shape selective 180° bimetallic Pd(II) acceptor was also synthesized and employed in self–assembly with several “clip” shaped organic donors to achieve several cationic tetrametallic Pd(II) supramolecular rectangles. Scheme 6: Schematic representation of the formation of neutral Pd4 (left) and Pd2 (right) molecular rectangles. Moreover, synthesis of a neutral bimetallic Pd(II) molecular rectangle 17 via one–pot reaction of trans–(PEt3)2PdCl2 with 1,8–diethynylanthracene (Scheme 6, right) is also presented herein. These –electron rich rectangles exhibit prominent chemoluminescence. Chemosensitivity of these complexes towards the detection of electron deficient nitroaromatics via fluorescence study is also discussed in details in this section. (Pl refer the abstract file for figures).

Page generated in 0.0918 seconds