• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 33
  • 10
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 203
  • 203
  • 74
  • 44
  • 35
  • 35
  • 29
  • 25
  • 17
  • 17
  • 16
  • 16
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Imidazolium- and triazolium-based interlocked structures for anion recognition and sensing

Spence, Graeme T. January 2012 (has links)
This thesis describes the synthesis and investigation of novel anion templated interlocked structures which incorporate the positively charged imidazolium and triazolium binding motifs for applications in anion recognition and sensing. Chapter One introduces the fields of anion supramolecular chemistry and mechanically interlocked structures, focusing on topics of particular relevance to this thesis, including anion recognition, anion sensing and the templated synthesis of interlocked architectures. Chapter Two details the incorporation of the imidazolium motif into the axle components of anion templated rotaxane hosts to achieve selective anion recognition by virtue of their interlocked binding cavities. The effects of exploiting imidazolium motifs with contrasting hydrogen bond donor arrangements and reducing the macrocycle size on the anion recognition properties of such systems were investigated using 1H NMR spectroscopy. Chapter Three reports the work undertaken to utilise fluorescent reporter groups as stoppers in the synthesis of anion sensing rotaxanes. Imidazolium- and triazolium based systems containing either luminescent ruthenium(II) bipyridyl complexes or the organic fluorophore anthracene were prepared and their anion sensing behaviours explored using fluorescence spectroscopy. Synthetic efforts to construct suitable photo-active rotaxanes are detailed. Chapter Four describes investigations of the novel naphthalimide triazolium motif both for use in interlocked molecular motion systems, and for fluorescence sensing applications. The preparation of a naphthalimide triazolium rotaxane, capable of selective, anion-induced, uni-directional shuttling which was investigated extensively using 1H NMR spectroscopy and optically signalled by perturbations in the UV/Vis spectrum, is detailed. Preliminary research studies into the potential to exploit this motif for surface based fluorescence sensing devices are also included. Chapter Five presents research into the utilisation of acyclic receptors displaying considerable binding induced conformational changes for fluorescence anion sensing. The recognition properties of a series of imidazolium-based receptors were studied, whilst the ability of a pyrene appended analogue to signal anion complexation via changes in excimer emission is reported. The control of interpenetrated assembly formation using anion-induced conformational changes within the threading component of a pseudorotaxane is also discussed. Chapter Six provides the experimental procedures and characterisation details for the compounds synthesised in this thesis. Chapter Seven is a summary of conclusions from Chapters Two, Three, Four and Five. Supplementary information relating to titration protocols, crystallographic data and surface studies is provided in the Appendices.
122

Conception, synthèse et études de récepteurs artificiels à plateforme polyaromatique pour la reconnaissance d’espèces d’intérêt biologique

Givelet, Cécile 12 December 2008 (has links)
La conception de récepteurs artificiels pour la reconnaissance moléculaire est un domaine très développé de la chimie supramoléculaire. Ce manuscript renferme les premières études réalisées sur une nouvelle classe de récepteurs supramoléculaires: les Discopus. Le Discopus offre un potentiel d’interactions via un cœur polyaromatique triphénylène (interactions p, effet hydrophobe) et une périphérie fonctionnelle flexible (Liaisons hydrogènes, interactions ioniques, hydrosolubilité) qui peut agir en coopérativité. Ces systèmes de reconnaissance peu préorganisés ont montré leur capacité de reconnaissance et leur aptitude à être sélectivif. Plusieurs familles de ces récepteurs ont été élaborées. Une famille de récepteurs phosphorylés reconnaît sélectivement les dérivés catéchol en milieu organique par liaisons Hydrogène et interactions p. Une seconde famille de Discopus carboxylés ont permis la reconnaissance, en milieu aqueux tamponné, de l’acétylcholine et les catécholamines par interactions ioniques et désolvatation de cibles. La préparation de cages à base triphénylène est en cours de réalisation afin d’amplifier le phénomène de reconnaissance. / The conception of artificial receptors is an intense field of research. This manuscript contains the first studies of a new class of receptors named discopus. The discopus can interact through a triphenylene core (p interactions, hydrophobic effect) and their flexible functional arms (hydrogen bonds, ionic interaction) which may cooperatively interact. These binding systems are just a little bit pre-organized and possess selective recognition properties. Several families of receptors have been prepared. Phosphorylated receptors showed a selective for catechol derivatives in organic media, through Hydrogen bond and p- interactions. In buffered media, carboxylated discopus allowed the recognition of acetylcholine and catecholamines through ionic interactions and desolvatation of the targets. The preparation of cages, based on triphenylene moieties, is in progress to increase the phenomenon of recognition.
123

Computational approaches to molecular recognition : from host-guest to protein-ligand binding / Approches computationnelles de la reconnaissance moleculaire : l'analyse de la liaison hôte-invite et protéine-ligand

Montalvo Acosta, Joel José 04 September 2018 (has links)
La reconnaissance moléculaire est un problème très intéressant et surtout un défi actuel pour la chimie biophysique. Avoir des prévisions fiables sur la reconnaissance spécifique entre les molécules est hautement prioritaire, car il fournira un aperçu des problèmes fondamentaux et suscitera des applications technologiques pertinentes. La thèse présentée ici est centrée sur une analyse quantitatif de la reconnaissance moléculaire en solution pour la liaison l'hôte-invité, la liaison protéine-ligand et la catalyse. Le cadre de la mécanique statistique utilisé pour décrire l'état de la technique de liaison récepteur-ligand est un point d'inflexion pour le développement de nouvelles méthodes améliorées. En fait, un modèle très performant et précis a été obtenu pour l'analyse de la liaison hôte-invité. Enfin, les modèles présentés ont été utilisés comme outils prédictifs fiables pour la découverte de nouvelles entités chimiques destinées à améliorer la catalyse en solution. / Molecular recognition is a very interesting problem, and foremost, a current challenge for biophysical chemistry. Having reliable predictions on the specific recognition between molecules is highly priority as it will provide an insight of fundamental problems and will raise relevant technological applications. The dissertation presented here is centered on a quantitative analysis of molecular recognition in solution for host-guest, protein-ligand binding and catalysis. The statistical mechanics framework used to describe the state-of-the-art for receptor-ligand binding is an inflection point for the developing of new improved and methods. In fact, a highly performanced and accurate model was obtained for the analysis of host-guest binding. Finally, the presented models were used as a reliable predictive tools for discovering new chemical entities for enhance catalysis in solution.
124

Targeting Biological Systems by Organic Synthesis Methods - Cancer Cells and Proteins

Winander, Cecilia January 2008 (has links)
<p>This thesis describes the design and synthesis of molecules with potential roles in biomedicine, with an emphasis on molecular recognition in complex biological environments. The first chapter describes the synthesis and evaluation of compounds for use in nuclide therapy. Carboranes are frequently used in the development of drugs for Boron Neutron Capture Therapy. New routes for monohydroxylation at the B and C atoms of <i>p</i>-carborane have been developed. The Suzuki-Miyaura reaction has been applied to the cross-coupling of <i>bis</i>(neopentyl glycolato)diboron or <i>bis</i>(pinacolato)diboron and 2-I-<i>p</i>-carborane. The synthesized derivatives are important intermediates in the synthesis of a number of potentially biologically active carborane-containing molecules.</p><p>The DNA intercalator doxorubicin has been functionalized to enable <sup>125</sup>I labelling. The aim of combining the DNA intercalator with <sup>125</sup>I was to achieve high delivery of cytotoxic radiation to the nucleus. The DNA-binding ability and cellular uptake of the synthesized compounds have been evaluated. One of the compounds bound strongly to DNA and had similar cellular uptake as daunorubicin, which makes the compound very interesting for further biological evaluation.</p><p>The second chapter describes the use of polypeptide conjugates to broaden our knowledge of molecular recognition. The polypeptides consist of 42 amino acids each and are designed to fold into helix-loop-helix motifs that dimerize due to their amphiphilic character. The polypeptides are combined with a variety of small organic molecules. The incorporation of small aromatic molecules to influence the structure and dynamics of a polypeptide has been investigated. By attaching a dansyl group to the side chain of a lysine residue, the dynamics of the protein’s hydrophobic core where affected to such a degree that a native-like fold was formed. The polypeptide conjugates have also been used to study the binding and recognition of native proteins. High-affinity binders for chitinases and acetylcholine esterase have been developed and evaluated.</p>
125

Photochemical Ligation Techniques for Carbohydrate Biosensors and Protein Interaction Studies

Norberg, Oscar January 2012 (has links)
This thesis concerns the development of surface ligation techniques for the preparation of carbohydrate biosensors. Several methodologies were developed based on efficient photochemical insertion reactions which quickly functionalize polymeric materials, with either carbohydrates or functional groups such as alkynes or alkenes. The alkyne/alkene surfaces were then treated with carbohydrate azides or thiols and reacted under chemoselective Cu-catalyzed azide-alkyne cycloaddition (CuAAC) or photo-radical thiol-ene/yne click chemistry, thus creating a range of carbohydrate biosensor surfaces under ambient conditions. The methodologies were evaluated by quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) flow through instrumentations with recurring injections of a range of lectins, allowing for real-time analysis of the surface interactions. The developed methods were proven robust and versatile, and the generated carbohydrate biosensors showed high specificities and good capacities for lectin binding.  The methods were then used to investigate how varying the glycan linker length and/or a sulfur-linkage affect the subsequent protein binding. The survey was further explored by investigating the impact of sulfur in glycosidic linkages on protein binding, through competition assays with various O/S-linked disaccharides in solution interactions with lectins. / QC 20120309
126

Targeting Biological Systems by Organic Synthesis Methods - Cancer Cells and Proteins

Winander, Cecilia January 2008 (has links)
This thesis describes the design and synthesis of molecules with potential roles in biomedicine, with an emphasis on molecular recognition in complex biological environments. The first chapter describes the synthesis and evaluation of compounds for use in nuclide therapy. Carboranes are frequently used in the development of drugs for Boron Neutron Capture Therapy. New routes for monohydroxylation at the B and C atoms of p-carborane have been developed. The Suzuki-Miyaura reaction has been applied to the cross-coupling of bis(neopentyl glycolato)diboron or bis(pinacolato)diboron and 2-I-p-carborane. The synthesized derivatives are important intermediates in the synthesis of a number of potentially biologically active carborane-containing molecules. The DNA intercalator doxorubicin has been functionalized to enable 125I labelling. The aim of combining the DNA intercalator with 125I was to achieve high delivery of cytotoxic radiation to the nucleus. The DNA-binding ability and cellular uptake of the synthesized compounds have been evaluated. One of the compounds bound strongly to DNA and had similar cellular uptake as daunorubicin, which makes the compound very interesting for further biological evaluation. The second chapter describes the use of polypeptide conjugates to broaden our knowledge of molecular recognition. The polypeptides consist of 42 amino acids each and are designed to fold into helix-loop-helix motifs that dimerize due to their amphiphilic character. The polypeptides are combined with a variety of small organic molecules. The incorporation of small aromatic molecules to influence the structure and dynamics of a polypeptide has been investigated. By attaching a dansyl group to the side chain of a lysine residue, the dynamics of the protein’s hydrophobic core where affected to such a degree that a native-like fold was formed. The polypeptide conjugates have also been used to study the binding and recognition of native proteins. High-affinity binders for chitinases and acetylcholine esterase have been developed and evaluated.
127

Energetics Of Protein-Carbohydrate Recognition

Swaminathan, C P 01 1900 (has links)
The work embodied in this thesis pertains to an attempt to understand better, the molecular basis of protein-carbohydrate recognition. For this purpose a systematic study was undertaken, not only of the energetics of lectin-sugar interactions, which serve as molecular recognition prototype of protein-carbohydrate interactions, but also of the complex effects of solvent water molecules surrounding both the species in solution state. The systems chosen for investigation include the specific recognition of sugars by lectins from diverse families, leguminosae and moraceae. The following salient aspects of the molecular recognition process constitute the focus of this thesis: • Effect of site specifically modified, deoxy-, fluorodeoxy-, or methoxy- substituted D-galactopyranoside binding to lectins. Isothermal titration calorimetric (ITC) investigations of the binding of these sugars to a model lectin permitted the correct prediction of the architecture of the primary binding site in the absence of x-ray crystal or NMR structure of the combining site (Ref. 7). The study provided the only unambiguous means of a site specific mapping of the hydrogen-bond donor- acceptor relationship of the monosaccharide within the primary combining site of the lectin. • Novel features of lectin-sugar recognition. Molecular interactions and forces contributing to the stabilization of the saccharides in the primary combining site of lectins. Binding of site specifically modified fluoro- substituted D- galactopyranosides to WBA I led to the demonstration of the involvement of C- F««»H-0 hydrogen bonds in stabilizing the saccharide within the combining site of lectin (Ref. 7). Implication of the novel C-H«**O hydrogen bonds at the specificity determining C-4 position in enabling the methoxy- substituted D- galactopyranoside to be stabilized within the primary binding site of galactose specific lectins WBA I and jacalin. • Development of a novel coupled osmotic-thermodynamic approach for investigating the role of water molecules in determining the specificity of lectin- sugar interactions. The results obtained led to the first direct demonstration of a differential uptake of water molecules accompanying the specific process of recognition of sugars by lectins (Ref 2) • On the origin of enthalpy-entropy compensation, a ubiquitous phenomenon accompanying the thermodynamics of several ligand binding reactions in aqueous solutions in general and the molecular recognition involving all known lectin-sugar interactions, in particular. The results provide the first unequivocal solution state proof of water reorganization as the source of enthalpy-entropy compensation (Ref 3). A new diagnostic test of a true osmotic effect in molecular recognition phenomena was proposed (Ref. 2) and validated (Ref. 3). As an introduction, Chapter 1 is a comprehensive review of literature that touches upon the diverse properties of lectins and our present understanding of their multifarious roles and applications, which has led to their christening, perhaps appropriately, as molecules that mediate the 'social' functions of cells and tissues. Although a challenge it is still, to decipher the "glycocode", it is apparent that the fundamental basis of the recognition function of lectin-sugar interactions is the initial specific binding of the saccharide molecule by the globular proteinaceous lectin molecule. It is imperative, therefore, that an incisive investigation of the origin of specificity of the binding reaction as well as the solvent effects influencing both the interacting species be undertaken for a better understanding of the complete molecular recognition process. Towards this end is introduced in Chapter 1 our present understanding of the results on lectin-sugar interactions from two complementary approaches viz structural, including X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, as well as thermodvnamic ones, which have provided important information on the architecture of the combining sites, the dynamic modes of saccharide recognition and forces involved therein. Despite a detailed knowledge available from such methods, a structure-energetics correlation has persisted as a current challenge of the field. Towards achieving this goal, studies on the energetics of the recognition of sugars by lectins were undertaken, with an aim to better understand the origin of specificity of lectin-sugar interactions. This thesis attempts to provide new insights on some of the possible lacunae precluding structure-energetics correlation and suggests ways to overcome them. Chapter 2 deals with ITC investigation of the effect of deoxy-, fluorodeoxy-, and methoxy- substitutions on the binding of monosaccharides to the primary combining site of the lectin WBA I isolated from the mature seeds of the leguminosae family member Psophocarpus tetragonolobus as well as the moraceae lectin jacalin. These studies provide valuable information on the hydrogen-bond donor-acceptor relationships within the combining site of the lectins wherein the sugar molecule is liganded with the amino-acid residues of the lectin. This study is relevant for understanding the origin of specificity of monosaccharide binding within the primary combining site of the lectins. It has recently become apparent that there is a predisposition in three-dimensional space, of the donor-acceptor pairs within the sugar binding site of the lectins. Hence there appears to be a stereochemical basis of distinguishing the recognition of the donor group vis-a-vis that of the acceptor group and that their spatial disposition determines the specificity of the saccharide recognition. Unambiguous assignment of which of the groups within the hydrogen bonded pairs is a donor and which one is the acceptor assumes greater importance. The ITC measurements of the binding of deoxy-, flurodeoxy-and methoxy-derivatives of D-galactopyranoside (oc-D-Gal) to the basic lectin from winged bean Psophocarpus tetragonolobus, WBA I revealed that each of the ligands bind to WBA I with the same stoichiometry of one per subunit (29 kDa) of WBA I. The binding enthalpies for various derivatives were essentially independent of temperature and showed complementary changes with respect to binding entropies. Replacement of the hydroxyl group by fluorine or hydrogen on C3 and C4 of the galactopyranoside eliminated their binding to the lectin, consistent with C3-OH and C4-OH acting as hydrogen bond donors. The affinity for C2 derivatives of galactose decreased in the order: GalNAc>2MeOGal>2FGal=Gal>2HGal which suggests that both polar and non-polar residues surround the C2 locus of galactose, consistent with the observed high affinity of WBA I towards GalNAc, where the acetamido group at C2 position is probably stabilized by both non-polar interactions with the methyl-group and polar interactions with the carbonyl group. The binding of C6 derivatives followed the order: Gal>6FGal>D-Fuc»6MeOGal=L-Ara indicating the presence of favourable polar interactions with a hydrogen bond donor in the vicinity. Based on these results the hydrogen bond donor-acceptor relationship of the complexation of methyl-a-D-galactopyranoside with the primary combining site of WBA I was proposed (Ref. /), which was subsequently validated by the crystal structure of methyl-a-D-galactopyranoside complexed with WBA I. This chapter also describes the results from ITC studies on the binding of monosaccharides and disaccharides to the lectin jacalin isolated from the mature seeds of the moraceae family member Artocarpus integrifolia. The novel observation about the existence of C-F*«*H-0 and C-H**»O hydrogen bonds in lectin-sugar interactions is also discussed in this chapter. Chapter 3 is a description of the detailed investigation on the role of water molecules in influencing the energetics of lectin-sugar recognition. A novel coupled osmotic-thermodynamic approach was developed to dissect the role of water molecules in determining the recognition of the sugars by lectins. For this purpose, the model system of mannotriose-concanavalin A was used because atomic level structural information on these complexes were available. The work described in this chapter, is the first solution state evidence for the role of water molecules in the specific interaction of carbohydrates with a legume lectin, concanavalin A (Con A) (Ref. 2). Sugar binding to Con A was accompanied by linear changes in the logarithm of binding constants as a function of neutral osmolyte strength, and were described by well defined negative slopes characteristic for each sugar. As these changes were independent of the chemical nature of the osmolyte used, the results were rationalized in terms of a true osmotic effect. It was demonstrated that the specific recognition of the branched trimannoside (3,6-di-0-(a-D-mannopyranosyl)~a-D-mannopyranoside), the individual dimannosidic arms (3-<9-(a-D-mannopyranosyl)-a-D-mannopyranoside, and 6-0-(a-D-marmopyranosyl)-a-D-mannopyranoside) and the monomeric unit D-mannopyranoside by Con A was accompanied by differential uptake of water molecules; 1,3 and 5 respectively. We also observed a conservation of the compensatory behaviour of binding enthalpies and entropies in the presence as well as absence of osmolytes. This provided the first definitive evidence that water-reorganization plays a direct role in effecting the phenomenon of enthalpy-entropy compensation in protein-ligand interactions in general and lectin-sugar interactions in particular, and that the specificity of lectin-sugar recognition is characterized by a differential uptake of water molecules. Chapter 3 also describes the first experimental identification of the origin of enthalpy-entropy compensation (EEC), a ubiquitous phenomenon accompanying the thermodynamics of multifarious biomolecular recognition processes. By coupling direct microcalorimetry with osmotic stress technique, an experimental handle was devised to test the hypothesis that solvent reorganization could be the source of EEC. The results provided an unequivocal demonstration that an osmotic change in water activity alone, at the same temperature and pH, is sufficient to result in the conservation of EEC during the molecular recognition of specific ligands by macromolecules belonging to thermodynamically diverse and unrelated systems, a compelling evidence that the primary source of EEC in aqueous solutions is attributable to reorganization of solvent water molecules, thus validating the test for the role of water reorganization as a source of EEC (Ref. 3). This provides the first definitive evidence for the notion that there is a direct involvement of water molecules in originating the EEC effect. Despite the generality of the results it is urged that several systems be subjected to a vigorous application of the coupled osmotic-thermodynamic approach proposed herein before constituting it as a proof. Suffice to say, it is perhaps heartening that at last one has a handle to test the role of water molecules in effecting EEC in the solution state and appreciate the diverse roles played by water molecules in mediating molecular recognition reactions. The proposal presented in Ref 2, that the strong isoequilibrium relationship of enthalpy with entropy during the recognition of saccharides by Con A studied under osmotic stress, be considered as diagnostic of a true osmotic effect was subsequently validated in a thermodynamically diverse and unrelated system of peptide recognition by monoclonal antibody, the results from which are discussed in an Appendix (A) to this thesis (Ref 4). That the stabilities of these lectins are not hampered in the presence of osmolytes was demonstrated using differential scanning calorimetry (DSC) (Ref 2). During the course of these DSC studies, we discovered an unusual feature in an animal galectin. Despite possessing the legume lectin fold, the 14-kDa S- type lectin exhibits multiple oligomeric states that are influenced profoundly by complementary ligands and surprisingly do not dissociate at the denaturation temperature. These results are discussed in an Appendix (B) to this thesis (Ref. 5). The general discussion and conclusions drawn from this work are summarized in chapter 4. Briefly, the following salient conclusions can be drawn from the work presented in this thesis: 1. Unambiguous assignment of hydrogen-bond donor-acceptor relationship at each of the hydroxyl group of the monosaccharide bound to the lectin belonging to different families has been demonstrated (Refs. 1,6). 2. First report of novel hydrogen bonds in lectin-sugar interactions such as C- F«MH-0 (Ref 1) and C-H^*O hydrogen bonds (Ref 6). 3. Unusual structural stabilities in a galectin with a fold similar to that in legume lectins but with starkly different thermodynamic stabilities (Ref 5). 4. We have demonstrated for the first time in solution state, that water molecules are involved in the specific recognition of sugars by concanavalin A (Ref 2). It appears that lectin-sugar recognition reactions are, in general, mediated by a net uptake of water molecules during the binding process (Ref 7). 5. We have provided the first experimental demonstration that reorganization of water molecules is the source of enthalpy-entropy compensation in molecular recognition processes (Ref 3). 6. We provide evidence for another facet in the recognition of antigens by antibodies, viz water release accompanying the binding reaction (Ref 4). The studies reported in this thesis provide the foundation for embarking on a systematic study not only of the origin of specificity of lectin-sugar recognition but also of the complex roles that water molecules play in mediating these molecular recognition processes. These specific binding reactions wherein non-linear thermodynamics predominates and precludes a direct structure-energetics correlation emphasize the need to account for the effect of solvent water molecules in lectin-sugar interactions in particular and, without any overemphasis, in molecular recognition processes in general.
128

Sequence-based prediction and characterization of disorder-to-order transitioning binding sites in proteins

Miri Disfani, Fatemeh Unknown Date
No description available.
129

An Exploration into the Molecular Recognition of Signal Transducer and Activator of Transcription 3 Protein Using Rationally Designed Small Molecule Binders

Shahani, Vijay Mohan 14 January 2014 (has links)
Signal transducer and activator of transcription 3 (STAT3) is a cancer-driving proto-oncoprotein that represents a novel target for the development of chemotherapeutics. In this study, the functional requirements to furnish a potent STAT3 inhibitor was investigated. First, a series of peptidomimetic inhibitors were rationally designed from lead parent peptides. Prepared peptidomimetics overcame the limitations normally associated with peptide agents and displayed improved activity in biophysical evaluations. Notably, lead peptidomimetic agents possessed micromolar cellular activity which was unobserved in both parent peptides. Peptidomimetic design relied on computational methods that were also employed in the design of purine based STAT3 inhibitory molecules. Docking studies with lead STAT3-SH2 domain inhibitory molecules identified key structural and chemical information required for the construction of a pharmacophore model. 2,6,9-heterotrisubstituted purines adequately fulfilled the pharmacophore model and a library of novel purine-based STAT3 inhibitory molecules was prepared utilizing Mitsunobu chemistry. Several agents from this new library displayed high affinity for the STAT3 protein and effectively disrupted the STAT3:STAT3-DNA complex. Furthermore, these agents displayed cancer-cell specific toxicity through a STAT3 dependant mechanism. While purine agents elicited cellular effects, the dose required for cellular efficacy was much higher than those observed for in vitro STAT3 dimer disruption. The diminished cellular activity could be attributed to the apparent poor cell permeability of the first generation purine library; thus, a second library of purine molecules was constructed to improve cell penetration. Unfortunately, iii 2nd generation purine inhibitors failed to disrupt phosphorylated STAT3 activity and suffered from poor cell permeability. However, a lead sulfamate agent was discovered that showed potent activity against multiple myeloma cancer cells. Investigations revealed potential kinase inhibitory activity as the source of the sulfamate purine’s biological effect. Explorations into the development of a potent STAT3 SH2 domain binder, including the creation of salicylic purine and constrained pyrimidine molecules, are ongoing. Finally, progress towards the creation of a macrocyclic purine combinatorial library has been pursued and is reported herein.
130

An Exploration into the Molecular Recognition of Signal Transducer and Activator of Transcription 3 Protein Using Rationally Designed Small Molecule Binders

Shahani, Vijay Mohan 14 January 2014 (has links)
Signal transducer and activator of transcription 3 (STAT3) is a cancer-driving proto-oncoprotein that represents a novel target for the development of chemotherapeutics. In this study, the functional requirements to furnish a potent STAT3 inhibitor was investigated. First, a series of peptidomimetic inhibitors were rationally designed from lead parent peptides. Prepared peptidomimetics overcame the limitations normally associated with peptide agents and displayed improved activity in biophysical evaluations. Notably, lead peptidomimetic agents possessed micromolar cellular activity which was unobserved in both parent peptides. Peptidomimetic design relied on computational methods that were also employed in the design of purine based STAT3 inhibitory molecules. Docking studies with lead STAT3-SH2 domain inhibitory molecules identified key structural and chemical information required for the construction of a pharmacophore model. 2,6,9-heterotrisubstituted purines adequately fulfilled the pharmacophore model and a library of novel purine-based STAT3 inhibitory molecules was prepared utilizing Mitsunobu chemistry. Several agents from this new library displayed high affinity for the STAT3 protein and effectively disrupted the STAT3:STAT3-DNA complex. Furthermore, these agents displayed cancer-cell specific toxicity through a STAT3 dependant mechanism. While purine agents elicited cellular effects, the dose required for cellular efficacy was much higher than those observed for in vitro STAT3 dimer disruption. The diminished cellular activity could be attributed to the apparent poor cell permeability of the first generation purine library; thus, a second library of purine molecules was constructed to improve cell penetration. Unfortunately, iii 2nd generation purine inhibitors failed to disrupt phosphorylated STAT3 activity and suffered from poor cell permeability. However, a lead sulfamate agent was discovered that showed potent activity against multiple myeloma cancer cells. Investigations revealed potential kinase inhibitory activity as the source of the sulfamate purine’s biological effect. Explorations into the development of a potent STAT3 SH2 domain binder, including the creation of salicylic purine and constrained pyrimidine molecules, are ongoing. Finally, progress towards the creation of a macrocyclic purine combinatorial library has been pursued and is reported herein.

Page generated in 0.119 seconds