• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 4
  • 1
  • Tagged with
  • 28
  • 28
  • 14
  • 11
  • 10
  • 10
  • 8
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Hydroxylation of 2-methylnaphthalene to 2-methylnaphthoquinone over TI-substituted catalysis

Rose, Jamey 12 1900 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Partially oxygenated aromatic compounds, e.g. quinones, hydroquinones and cresols, play a vital role in the fine chemical industry and were initially prepared by stoichiometric oxidation processes that produce toxic products that are hazardous towards the environment. As a result, it was important to investigate environmentally friendly processes for the hydroxylation of aromatic compounds. This resulted in newer methods using Ti-substituted microporous zeolites as catalysts with hydrogen peroxide as oxidant in the presence of a solvent. However, the methods were found to be ineffective for large, bulky substrates due to the small pore structure. This led to using Ti-mesoporous materials as catalysts but suffered from two drawbacks; the hydrophilic nature and low hydrothermal stability of the catalyst structure. Ti-microporous and Ti-mesoporous materials acting as catalysts for the oxidation of bulky substrates achieved environmentally friendly processes but obtained low conversions and quinone yields. Therefore, the challenge has been to develop a process that is environmentally friendly, achieves high conversions, where the catalyst acts truly heterogeneous and obtains high quinone yields for the hydroxylation of bulky substrates. Recently, micropores/mesopores catalysts incorporating advantages of both micropores and mesopores materials were synthesised and seemed promising for the hydroxylation of bulky substrates. This study focuses on synthesising and evaluating the feasibility of various Ti-substituted catalysts for improving the hydroxylation of the bulky substrate, 2-methylnaphthalene (2MN) with hydrogen peroxide as oxidant in the presence of a solvent, acetonitrile. The oxidation of 2MN produces 2-methyl-1,4-naphthoquinone (2MNQ). 2MNQ is also known as menadione or Vitamin K3 and acts as a blood coagulating agent. The catalysts synthesised for this study were mesoporous catalysts, Ti- MCM-41 and Ti-MMM-2 and microporous/mesoporous catalysts, Ti-MMM-2(P123) and a highly ordered mesoporous material. The main objective of this study was to design an efficient process that is environmentally friendly and achieves high 2MN conversions and 2MNQ yields. This was achieved by evaluating the various catalysts synthesised, reaction conditions, testing if the catalyst was truly heterogeneous and identifying the products formed from the process. The designed process was proved to be environmentally friendly because the system did not produce products that were harmful towards the environment. The products identified in this study were 2MNQ, 2-methyl-1-naphthol, 2-naphthaldehyde, 3-ethoxy-4-methoxybenzaldehyde and menadione epoxide. An investigation was conducted to determine which catalyst synthesised favoured this process by quantifying the effect reaction conditions have on the various catalysts. The reaction conditions were defined in terms of the hydrogen peroxide volume, catalyst amount, solvent volume, substrate amount, reaction time and reaction temperature. The desired catalyst for this study obtained the highest 2MN conversions in comparison with the other catalysts and favoured the formation of 2MNQ. The catalyst achieving the highest conversions and favouring 2MNQ in most cases for this investigation was the highly ordered mesoporous material. Improving operating conditions to obtain high 2MNQ yields for the oxidation of 2MN to 2MNQ over the highly ordered mesoporous material was determined by varying the reaction conditions with the one factor at a time approach and a factorial design. The one factor at a time approach showed that best 2MNQ yields were obtained at 1 g substrate when investigating a change in substrate amount between 0.5 g and 2 g. Best 2MNQ yields were obtained at 10 ml solvent when investigating a change of solvent volume between 5 ml and 20 ml. The 2MNQ yield increased with increasing the catalyst amount (50 mg to 200 mg), hydrogen peroxide volume (1 ml to 6 ml) and increasing the reaction times (2 hour to 6 hours) at reaction temperatures, 120°C and 150°C. The yield decreased with increasing the reaction time (2 hours to 6 hours) at reaction temperature, 180°C. A preliminary 2 level factorial design was prepared to observe if there were any important interactions affecting the 2MNQ yield. The results from the factorial design indicated that the hydrogen peroxide volume had the most influence on the 2MNQ yield followed by the reaction time-reaction temperature interaction and reaction temperature. From the factorial design, the yield increased by increasing the hydrogen peroxide volume and reaction temperature whilst decreasing the reaction temperature-reaction time interaction. The highest 2MNQ yields and 2MN conversions obtained for the hydroxylation of 2MN to 2MNQ over the highly ordered mesoporous material in this study were in the ranges 48-50 % and 97-99 %, respectively. This study indicates that the process system, reaction conditions and catalyst type have an impact on the products formed, 2MN conversion, 2MNQ selectivity and 2MNQ yield. The highly ordered mesoporous material was found to be truly heterogeneous because no leaching occurred and the catalyst could be recycled without losing its catalytic activity and selectivity for at least two catalyst cycles. It can be concluded that the highly ordered mesoporous material is therefore a promising catalyst for the selective oxidation of bulky substrates with aqueous H2O2 because it produces an environmentally friendly process, achieves high conversions, obtains high quinone yields and the catalyst truly acts heterogeneous. / AFRIKAANSE OPSOMMING: Gedeeltelik geoksideerde aromatiese verbindings (bv. kinone, hidrokinone en kresole) speel ‘n belangrike rol in die fynchemiebedryf. Hierdie verbindings is aanvanklik voorberei deur stoïchiometriese oksidasie prosesse wat gifstowwe nadelig vir die omgewing veroorsaak. Daarom is dit belangrik om omgewingsvriendelike prosesse vir die hidroksilering van aromatiese verbindings te ondersoek. Hierdie ondersoeke het gelei tot nuwe metodes wat Ti-vervangde mikroporeuse seoliete as katalisator met waterstofperoksied as oksideermiddel in die teenwoordigheid van ʼn oplosmiddel benut. Dit is egter gevind dat hierdie metodes oneffektief is vir groot, lywige substrate weens die fyn poriestruktuur van die katalisator. Dit lei tot die gebruik van Ti-mesoporeuse materiale as katalisators, maar toon twee tekortkominge, naamlik die hidrofiliese aard en lae hidrotermiese stabiliteit van die katalisatorstruktuur. Ti-mikroporeuse en Ti-mesoporeuse materiale benut as katalisators vir die oksidasie van lywige substrate lewer omgewingsvriendelike prosesse, maar vermag lae omsetting en kinoonopbrengs. ʼn Uitdaging is dus om ʼn omgewingsvriendelike proses te ontwikkel met hoë omsetting, waar die katalisator werklik heterogeen optree en hoë kinoonopbrengs lewer vir die hidroksilering van lywige substrate. Katalisators vir die hidroksilering van lywige substrate wat die voordele van beide mikroporieë/mesoporieë ten toon stel is onlangs gesintetiseer, met belowende resultate. Hierdie studie is ingestel op die sintetisering en evaluering van uitvoerbaarheid van verskeie Tivervangde katalisators vir die optimering van die hidroksilering van die lywige substraat, 2- metielnaftaleen (2MN), met waterstofperoksied as oksideermiddel met asetonitriel as oplosmiddel. Die oksidering van 2MN produseer 2-metiel-1,4-naftokinoon (2MNK), ook bekend as vitamien K3, ʼn bloedstollingsmiddel. Die katalisators vervaardig vir hierdie studie was die mesoporeuse katalisators, Ti-MCM-41 en Ti-MMM-2, en die mikroporeuse/mesoporeuse katalisor Ti-MMM-2(P123), sowel as ʼn hoogs geordende mesoporeuse materiaal. Die hoofdoel van hierdie studie was om ʼn doeltreffende, omgewingsvriendelike proses met hoë 2MN omsetting en 2MNK opbrengs te ontwerp. Voorgenoemde is vermag deur verskeie gesintetiseerde katalisators en reaksiekondisies te evalueer, om te toets of katalisators werklik heterogeen is, en om die prosesprodukte te identifiseer. Die ontwerpte proses kan beskou word as omgewingsvriendelik, aangesien die stelsel geen produkte lewer wat skade aan die natuur kan veroorsaak nie. 2MNK, 2-metiel-1-naftol, 2-naftaldehied, 3- etoksi-4-metoksibensaldehied en menadioonepoksied is in hierdie studie geïdentifiseer as prosesprodukte. Om te bepaal watter gesintetiseerde katalisators hierdie proses begunstig, is ʼn ondersoek geloods om die effek van reaksiekondisies op die verskeie katalisators te kwantifiseer. Die reaksiekondisies is omskryf in terme van waterstofperoksiedkonsentrasie, katalisatorhoeveelheid, oplosmiddelvolume, substraathoeveelheid, reaksietyd en reaksietemperatuur. Die gewenste katalistor vir hierdie proses was die katalisator wat die hoogste 2MN omsetting lewer en die vorming van 2MNK bevorder. Die hoogs geordende mesoporeuse materiaal was in hierdie ondersoek die katalisator met die hoogste omsetting wat ook 2MNK-vorming bevorder het in die meeste gevalle. Om die beste bedryfstoestande vir hoë 2MNK opbrengs vanaf die oksidering van 2MN oor hoogs geordende mesoporeuse materiaal te bepaal, is die reaksiekondisies verander deur met een faktor op ʼn slag te verander, sowel as faktorverandering volgens ʼn faktoriaalontwerp. Die een-faktor-op-‘nslag benadering het getoon dat die 2MNK opbrengs ʼn maksimum bereik waar die substraathoeveelheid tussen 0.5 g en 2 g wissel, met die oplosmiddelvolume tussen 5 ml en 20 ml. Die opbrengs het ietwat verbeter met ʼn groter hoeveelheid katalisatorhoeveelheid (van 50 mg na 200 mg), terwyl die opbrengs drasties verbeter het waar die waterstofperoksiedvolume van 3 ml tot 6 ml verhoog is. Die opbrengs het ook verbeter met ʼn styging in reaksietemperatuur (van 120°C tot 180°C) met reaksietydintervalle van 1 tot 6 ure. Die opbrengs het egter gedaal by 180°C waar reaksietye langer as 2 ure. Volgens die resultate van die een-faktor-op-‘n-slag benadering blyk dit dat reaksietemperatuur, waterstofperoksiedvolume, katalisatorhoeveelheid en reaksietyd faktore is wat verhoogde 2MNK opbrengs bevorder. Hierdie reaksiekondisies is geselekteer vir die faktoriaalontwerp. ʼn Voorlopige 2- vlak faktoriaalontwerp is voorberei om te bepaal of daar enige belangrike interaksies is wat die 2MNK opbrengs beïnvloed. Die resultate van die faktoriaalontwerp het aangetoon dat waterstofperoksiedvolume die grootste invloed op 2MNK opbrengs het, gevolg deur die interaksie van reaksietyd en reaksietemperatuur, en dan reaksietemperatuur. Die faktoriaalontwerp resultate toon verder dat opbrengs verhoog met toenemende waterstofperoksiedvolume en reaksietemperatuur, terwyl die opbrengs verlaag soos wat die reaksietyd-reaksietemperatuur interaksie toeneem. Hierdie studie het hoogste 2MNK opbrengs van 48-50% en 2MN omsetting van 97-99% vir die hidroksilering van 2MN na 2MNK oor hoogs geordende mesoporeuse materiale behaal. Hierdie studie bevestig bevindinge van die literatuur dat die prosesstelsel, reaksiekondisies en katalisatortipe ʼn groot impak het op prosesprodukte, 2MN omsetting, 2MNK selektiwiteit en 2MNK opbrengs. In hierdie navorsingstudie is bevind dat hoë 2MN omsetting en 2MNK opbrengs behaal word by hoë reaksietemperature met kort reaksietye en hoë waterstofperoksiedvolumes. Dit is gevind dat die hoogs geordende mesoporeuse materiaal werklik heterogeen is, aangesien geen loging plaasgevind het nie, en aangesien die katalisator hergebruik kon word sonder verlies aan katalisatoraktiwiteit en –selektiwiteit, vir ten minste twee katalisatorsiklusse. ʼn Gevolgtrekking kan gemaak word dat die hoogs geordende mesoporeuse materiaal ʼn belowende katalisator vir die selektiewe oksidering van lywige substrate met waterige H2O2 is, aangesien dit ʼn omgewingsvriendelike proses lewer met hoë omsetting, hoë kinoonopbrengs en katalisatorgedrag wat waarlik heterogeen is.
12

Analysis of factors influencing the performance of CMS membranes for gas separation

Williams, Paul Jason 10 May 2006 (has links)
Carbon molecular sieve (CMS) membranes represent the most attractive pure component materials to compete against polymer membranes for high performance gas separations. CMS membranes are formed from the thermal decomposition of polymer precursors and can therefore be formed into continuous defect free membranes with excellent gas separation performance. Over the last 20 years, CMS membranes have been produced in a variety of geometries and have a wide range of separation performance applicable to several important gas separations. Though research into CMS membrane formation is quite extensive, the relationship between synthesis factors and separation performance is still not well understood. The goal of this study was to elucidate the effect of two different synthesis factors on the separation performance of CMS membranes to allow more control over separation performance. The foci of this study were to clarify (1) the effect of pyrolysis atmosphere and (2) the effect of polymer precursor composition. Dense flat CMS membranes were synthesized from 6FDA:BPDA-DAM precursor at 550 oC using several pyrolysis atmospheres including vacuum pyrolysis (<0.05 torr), helium and argon flowing at atmospheric pressure, and helium and argon flowing at reduced pressures. The separation performance of CMS membranes produced under different pyrolysis atmospheres suggests that the amount of oxygen available during pyrolysis has a significant affect on the microstructure of membrane. CMS membranes were produced from 6FDA:BPDA(1:1)-DAM and 6FDA:BPDA(1:1)-DAM under identical pyrolysis conditions to determine the utility of polymer precursor composition as an engineering tool to fine-tune the performance of CMS membranes. In a second study utilizing 6FDA-6FpDA and 6FDA-6FmDA precursors, the separation performance of CMS membranes was shown to be dependent on the intrinsic precursor free volume. These studies have shown that two factors to be considered when choosing a polymer precursor are the intrinsic free volume of the polymer and the composition of the by-products evolved during pyrolysis.
13

Incorporação da zircônia sulfatada a peneira molecular MCM-41 para ser utilizada na reação de transesterificação. / Incorporation of the sulfated zirconia to the molecular sieve MCM-41 to be used in the transesterification reaction.

PEREIRA, Carlos Eduardo. 17 August 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-08-17T13:19:35Z No. of bitstreams: 1 CARLOS EDUARDO PEREIRA - TESE (PPGEQ) 2017.pdf: 6340687 bytes, checksum: a5c8d06008238c03161add19b46e0a44 (MD5) / Made available in DSpace on 2018-08-17T13:19:35Z (GMT). No. of bitstreams: 1 CARLOS EDUARDO PEREIRA - TESE (PPGEQ) 2017.pdf: 6340687 bytes, checksum: a5c8d06008238c03161add19b46e0a44 (MD5) Previous issue date: 2017-08-02 / A peneira molecular MCM-41 é considerada promissora como suporte para os óxidos metálicos em processo de refino de petróleo, adsorventes e catalisadores. Os catalisadores heterogêneos apresentam grande potencial de viabilizar a produção de biodiesel através da reação de transesterificação. A síntese da peneira molecular MCM-41 foi realizada a partir da água deionizada, brometo de cetiltrimetilamônio, hidróxido de amônio, etanol e ortossilicato de tetraetila. O óxido de zircônia foi obtido pelo método sol-gel a partir do oxicloreto de zircônio com hidróxido de amônio à temperatura ambiente e ativado por calcinação a 550 e 700°C. Em seguida o óxido de zircônia ativado foi sulfatado, seco e calcinado a 400 °C. A zircônia sulfatada foi incorporada a peneira molecular MCM-41 por impregnação via úmida, com diferentes proporções mássicas (10, 20, 30, 40, 50%). Verifica-se que a partir das análises de difração de raio X a formação da peneira molecular MCM-41 confirmou a estrutura hexagonal e a fase mesoporosa. Observou-se formação das fases, tetragonal e monoclínica do óxido de zircônia. Através da espectroscopia de absorção na região do infravermelho com transformada de Fourier foi possível detectar picos referentes a presença de íons sulfatos bidentados ligado a superfície da zircônia. As propriedades texturais apresentaram estruturas com poros bimodais após o processo de incorporação da zircônia sulfatada. As micrografias do óxido de zircônia ativadas a 550 e 700 °C apresentaram tricas em sua superfície antes e após de incorporação da zircônia sulfatada. O potencial catalítico foi avaliado na reação transesterificação do óleo de soja por rota metílica. O catalisador com óxido de zircônia ativado a 700 °C e sulfatado e incorporado a peneira molecular com 40% (em peso) apresentou maior conversão de ésteres metílicos 83,8%. No entanto, esta conversão não especifica o óleo obtido como biodiesel de acordo com a norma da Agência Nacional de Petróleo, Gás Natural e Combustíveis. Assim como o índice de acidez. Porém os resultados de densidade e viscosidade estão de acordo com a especificação estabelecida pelas normas. / The MCM-41 molecular sieve is considered promising as a support for the petroleum refining metal oxides, adsorbents and catalysts. Heterogeneous catalysts have great potential to make viable the production of biodiesel through the transesterification reaction. The synthesis of the MCM-41 molecular sieve was performed from deionized water, cetyltrimethylammonium bromide (CTABr), ammonium hydroxide (NH4OH), ethanol and tetraethyl orthosilicate (TEOS). The zirconium oxide was obtained by the sol-gel method from zirconium oxychloride with ammonium hydroxide at room temperature, the material was activated at 550 and 700 °C, and thereafter, sulphated. The material was then activated using the calcination process at 550 and 700 ° C and sulfated. The sulfation process was carried out with a 0.5 mol.L-1 sulfuric acid solution and allowed to stand for 30 minutes, dried for 12 h at 120 ° C and calcined at 400 ° C. The process of incorporation of ZS into the MCM-41 molecular sieve was done using different mass proportions (10, 20, 30, 40 and 50%) in relation to the mass of the MCM-41 molecular sieve, by wet method. It was verified from the analyzes of X-ray diffraction, the adsorption of nitrogen (BET method) and Fourier transform infrared spectroscopy (FTIR) the crystalline and textural properties which confirmed the molecular sieve obtainment and the presence of the tetragonal and monoclinic phases of the sulfated zirconia in the mesoporous structure. The micrographs of activated zirconium oxide at 550 and 700 °C and sulphated showed dispersed particles with the presence of cracks on its surface, after the incorporation there were no modifications in the structure. The catalytic activity was evaluated by the transesterification reaction of the soybean oil via the methyl route, using all the catalysts which were synthesized. The results showed that the catalyst 50_ZS/MCM-41_550 °C showed a greater conversion of methyl esters of 81.4% with the predominant tetragonal phase. The catalyst with the zirconium oxide activated at 700 °C obtained a conversion of 83.8% to the 40_ZS/MCM-41_700 °C catalyst, with the predominant monoclinic phase. However, the ester content of the oil samples was below the value established by the National Agency of Petroleum, Natural Gas and Fuels (ANP). The density and kinematic viscosity of the catalysts under study X_ZS/MCM-41 were in the range of the established standard. The acidity index was above the specified values, confirmed by the high percentage of free fatty acids in the oil.
14

Síntese de carbonos cerâmicos mesoporosos para aplicação como eletrodos em células a combustível a metanol direto / Synthesis of the novel mesoporous carbon ceramics for application on direct fuel cell electrodes

Gallo, Jean Marcel Ribeiro 16 August 2018 (has links)
Orientadores: Heloise de Oliveira Pastore, Leonardo Marchese / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-16T12:57:15Z (GMT). No. of bitstreams: 1 Gallo_JeanMarcelRibeiro_D.pdf: 4780624 bytes, checksum: 5426a4e169601ec9fd875fbe271a36c9 (MD5) Previous issue date: 2010 / Resumo: Esse trabalho teve como objetivo a aplicação de peneiras moleculares mesoporosas de sílica como suporte para metal em aplicações em eletrodos na Célula a combustível a metanol direto (DMFC). As peneiras moleculares mais importantes, MCM-41, MCM-48 e SBA-15, foram escolhidas. Em um primeiro momento a reprodutibilidade das sínteses foi verificada. Como pesquisa lateral foi estudada a acidez de superfície da SBA-15 contendo alumínio obtida por síntese direta. Além disso, foi desenvolvida a primeira síntese direta para a [Al]-SBA-15 Sílica é um isolante elétrico e, portanto, não pode ser utilizada como um eletrodo, deste modo, uma nova família de compósitos chamada Carbonos Cerâmicos Mesoporosos (MCC) foi preparada pela adição de grafite comercial na síntese das sílicas mesoporosas (MCM-41, MCM-48 ou SBA-15). A grafite não influenciou na formação da mesofase de sílica, de qualquer maneira, a MCC-MCM-41 e a MCC-MCM-48 cresceram na superfície da grafite. As MCCs preparadas com razão em massa sílica/carbono de 1/1 e 1/1.25 apresentaram condutividades elétricas similares enquanto MCCs com menos quantidade de carbono se mostraram isolantes elétricos. As MCCs(1/1) modificadas com 20 % em massa de paládio foram usadas na DMFC chegando no máximo a desempenhos 10 vezes menores que o do sistema usando o suporte comercia Vulcan XC-72R. Esse comportamento foi atribuida a menos condutividade elétrica dos MCCs. Para aumentar a condutividade elétrica dos MCCs(1/1), o agente direcionador orgânico usado na síntese da fase silícica foi carbononizado ( ao invez de calcinado, como feito anteriormente) Alternativamente, os MCCs foram sintetizados com uma razão em massa sílica/carbono de 1/3. Os testes dos MCCs contendo 20 % em massa de platina no cátodo da DMFC mostraram melhores resultados para a MCC-SBA-15(1/3) e a MCC-MCM-48(1/1) pirolisada. Por outro lado, o despenho do sistema usando o suporte Vulcan-XC-72R foi o dobro. Modificados com 60 % em massa da liga PtRu, o MCC-SBA-15(1/3) e o MCC-MCM-48(1/1) pirolisado foram aplicados no ânodo da DMFC, alcançando desempenhos 20 e 40 % maiores que a Vulcan XC-72R. / Abstract: The present work aimed at using mesoporous silica as metal support for Direct Methanol Fuel Cell (DMFC) electrodes. The most important mesoporous silica, MCM-41, MCM-48 and SBA-15, were chosen. In a first moment their synthesis were verified with respect to the reproductibility. As side results, the surface acidity of aluminum containing SBA-15 obtained by direct synthesis was also studied and it is also reported the first [Al]-SBA-16 obtained by direct synthesis was reported. Silica is electrically insulating and thus cannot be used directly in a cell electrode, thus it was reported here the preparation of the novel composite named Mesoporous Carbon Ceramics (MCC) obtained by the addition of commercial graphite into the mesoporous silica synthesis (MCM-41, MCM-48 or SBA-15). The graphite did not influence in the formation of the silica mesophase, however, MCC-MCM-41 and MCC-MCM-48 grow on the graphite surface. The MCCs prepared with silica/carbon weight ratio of 1/1 and 1/1.25 presented similar electrical conductivities while lower carbon loading MCCs were found insulating. The MCCs(1/1) modified with 20 wt % of platinum were used on Direct Methanol Fuel Cell electrodes (DMFC) reaching performances more ten 10 times lower than that of a system using the commercial metal support Vulcan XC-72R, probably due to their lower electrical conductivity. To increase the electrical conductivity of the MCCs(1/1), the surfactant used to synthesize the silica phase was carbonized (instead of calcined as done for the previous materials). Alternatively, MCCs was synthesized with silica/carbon weight ratio of 1/3. The test of 20 wt. % platinum-containing MCCs on the cathode of the DMFC showed that the best results were obtained for the MCC-SBA-15(1/3) and for the template-pyrolysed MCC-MCM-48(1/1), however, the performance was approximately half of that of the system using Vulcan-XC-72R. When modified with 60 wt % of PtRu alloy, MCC-SBA-15(1/3) and to the template-pyrolysed MCC-MCM-48(1/1) and applied on the DMFC anode, the performances at 343 K was ca. 20 and 40 % higher that that obtained for the system using Vulcan XC-72R. / Doutorado / Quimica Inorganica / Doutor em Ciências
15

Síntese e caracterização de MCM-41 impregnada com bário e cromo e suas propriedades catalíticas para reações de convensão de etanol / Synthesis and characterization of MCM-41 impregnated with barium and chromium and their catalytic properties for ethanol conversion reactions

La Salvia, Nathália, 1985- 07 February 2010 (has links)
Orientadores: Gustavo Paim Valença, Sandra Bizarria Lopes Villanueva / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-16T11:20:37Z (GMT). No. of bitstreams: 1 LaSalvia_Nathalia_M.pdf: 2174540 bytes, checksum: fc21aef557be5b73b478199385b64dde (MD5) Previous issue date: 2010 / Resumo: Peneiras moleculares do tipo MCM-41 foram sintetizadas e impregnadas com 16% de bário e 1,4%; 2,9% e 5,6 % de cromo. As amostras foram então calcinadas e caracterizadas, e utilizadas na conversão catalítica de etanol. Esses materiais apresentaram áreas superficiais entre 400 a 1.200 m2 g-1. Os difratogramas de raios X mostraram que fases da MCM-41 foram obtidas. A introdução de Ba e Cr resultou em picos de DRX diferentes da MCM-41, sugerindo a formação de fases cristalinas diferentes dentro da peneira molecular. O aumento da quantidade do Cr (1,4; 2,9 e 5,6%) provoca um aumento na intensidade cristalina. Os testes catalíticos foram realizados em um reator de leito fixo, as temperaturas de reação utilizadas foram 600, 650, 700 e 750 K e as pressões de etanol de 5820, 4278, 3110 e 2220 Pa, a massa utilizada foi 30 mg, e o fluxo de etanol de 2×10-6 m3 s-1. Os produtos da reação identificados por um cromatógrafo a gás com uma coluna Porapak Q foram o eteno, etoxietano, acetaldeído, água e butadieno e suas concentrações foram calculadas com base na área do pico e os fatores de resposta térmicos. Os cálculos dos efeitos difusivos demonstraram que a transferência de massa externa para reações a 750 K podem ser limitantes da reação. Foram realizados também os cálculos da taxa de reação, da energia de ativação, fatores pré exponencial, constante da taxa e ordens de reação para todos os sólidos Os resultados obtidos a partir do estudo das energias das reações consideradas neste estudo mostram que a equação da taxa de reação não pode ser da forma r = KCn , ou seja, a expressão da taxa de reação possui uma forma mais complexa que deve considerar uma constante de adsorção do reagente na superfície. Cinco reações principais foram observadas, com formação de eteno, etoxietano, acetaldeído, hidrogênio e butadieno. A MCM-41 sem Ba e Cr catalisou a reação de desidratação de etanol, com eteno como produto principal em todas as temperaturas testadas nesse trabalho. A introdução de Ba resultou na formação de eteno e etoxietano como produtos de reação, com esse último em maiores proporções em temperaturas menores e o paulatino aumento da quantidade de eteno e diminuição da quantidade de etoxietano com o aumento da temperatura. A introdução de Cr nos poros da Ba/MCM-41 resultou na formação de acetaldeído e butadieno. O aumento da quantidade de Cr resultou em um aumento na quantidade de butadieno nos produtos de reação / Abstract: Molecular sieves of the MCM-41 type were synthesized and impregnated with 16% w/w Ba and three loads of Cr: 1.4%, 2.9% and 5.6%. The solids were then calcined, characterized and tested as catalysts for the conversion of ethanol. The surface areas of the solids varied between 400 and 1200 m2 g-1. The X ray diffraction patterns show MCM-41 phases in all solids. The introduction of Ba and Cr resulted in different XRD peaks in addition to the MCM-41 peaks, suggesting the formation of different crystal phases inside the molecular sieve. The increase in the amount of Cr in the solids resulted in more crystalline phases (more intense peaks). The catalytic test reaction of ethanol was carried out in a fixed bed microreactor under differential conditions at 600, 650, 700 and 750 K and at 5820, 4278, 3110 e 2220 Pa of ethanol partial pressure. The mass of catalyst used in all tests was ca. 30 mg and the volumetric flow of ethanol saturated N2 was 2×10-6 m3 s-1. The reaction products were sent to a gas chromatograph with a Porapak column where they were separated. Ethene, diethyl ether, acetaldehyde, water and butadiene were identified and their concentrations calculated based on peak area and thermal response factors. The mass balance of all compounds was calculated for all reactions as well as the extent of reaction for all reactions for every pressure and temperature used in this work. The criteria for diffusion limitations were used in all cases. Calculations based on the experimental data suggest that data at 750 K may be diffusion-limited. Reaction rate, activation energy and pre exponential factor were calculated for all reactions. Five reactions were observed in this work, namely, the dehydration of ethanol into ethene and into diethyl ether, the dehydrogenation of ethanol into acetaldehyde, the condensation of ethanol and acetaldehyde into butadiene and the dehydration of diethyl ether into ethene. When MCM-41 with no Ba or Cr was used as a catalyst, only ethene, water and diethyl ether were observed as reaction products, with ethene as the main products for the entire range of temperatures and pressures used in this work. The introduction of Ba resulted also in the formation of ethene, water and diethyl ether, but with the latter being formed in larger amounts at lower temperatures and the former at higher temperatures. The introduction of Cr in the pores of Ba/MCM-41 resulted in the formation of acetaldehyde and butadiene. The increase in the amount of Cr resulted in an increase in the amount of butadiene / Mestrado / Desenvolvimento de Processos Químicos / Mestre em Engenharia Química
16

Thermal Tuning of Ethylene/Ethane Selective Cavities of Intrinsically Microporous Polymers

Salinas, Octavio 21 June 2016 (has links)
Ethylene is the most important organic molecule with regard to production volume. Therefore, the energy spent in its separation processes, based on old-fashioned distillation, takes approx. 33% of total operating costs. Membranes do not require significant thermal energy input; therefore, membrane processes may separate hydrocarbons cheaply and just as reliably as distillation columns. Olefin/paraffin separations are the future targets of commercial membrane applications, provided high-performing materials become available at reasonable prices. This thesis addresses the development of advanced carbon molecular sieve (CMS) membranes derived from intrinsically microporous polymers (PIMs). Chronologically, Chapter 4 of this work reports the evaluation of PIMs as potential ethylene/ethane selective materials, while Chapters 5 to 7 propose PIMs as carbonization precursors. The gravimetric sorption studies conducted in this work regarding both the polymers and their heated-derivatives revealed that this separation is entirely controlled by diffusion differences. The pristine polymers examined in this study presented BET surface areas from 80 to 720 m2g-1. Furthermore, the effect of using bromine-substituted PIM-polyimides elucidated a boost in ethylene permeability, but with a significant drop in selectivity. The hydroxyl functionalization of PIM-polyimides was confirmed as a valuable strategy to increase selectivity. Functionalized PMDA-HSBF is the most selective polyimide of intrinsic microporosity known to date (= 5.1) due to its hydrogen-bonded matrix. In spite of their novelty, pristine PIMs based on the spirobisindane moiety were not tight enough to distinguish between the 0.2 Å difference in diameter of the ethylene/ethane molecules. Therefore, they did not surpass the upper bound limit performance of known polymeric membranes. Nevertheless, the carbons derived from these polymers were excellent ethylene/ethane sieves by virtue of their narrow and tight pore distribution around the 3.6- 4.4 Å range. PIM-based carbons were typically 10 times more permeable than their corresponding low free-volume analogues treated after the weight-loss of the sample reached a plateau. Furthermore, carbons derived from PIM-6FDA-OH and PIM-6FDA at 800 ºC were as ethylene separating efficient as their lower free-volume counterparts. The pore sintering mechanism that takes place above 600 ºC during the carbonization procedure of these films reduced the entropic freedom of the molecules, as was observed from separation factors of up to 25 under pure-gas conditions and 2 bar of pressure— The best performing CMS membranes reported to date for ethylene/ethane separation. The mixed-gas separation of 1:1 binary ethylene/ethane mixtures revealed a significant decrease of the pure-gas measurements due to a carbon matrix dilation effect. This localized ultramicroporous dilation caused the ethane permeation rate to increase monotonically as the pressure rose to realistic operating values. Nevertheless, the CMS obtained from PIM-6FDA and PIM-6FDA-OH surpassed any diffusion-controlled polymer or carbon that has been reported to date.
17

Gas purification by short cycle pressure swing adsorption. Experimental and theoretical studies of a fixed bed adsorption process for the separation of carbon dioxide from air at ambient temperatures using molecular sieve 5A and activated charcoal adsorbents.

Ellis, David I. January 1973 (has links)
An experimental pressure swing adsorption unit has been constructed and used to investigate the separation of carbon dioxide from carbon dioxide enriched air using both an activated carbon and a type 5A molecular sieve adsorbent. Continuous, cyclic operation was achievedusing a pair of fixed bed adsorbers. At any one time the feed gas entered one bed at a high pressure and part of the purified gas was returned to the other bed at a reduced pressure to provide countercurrent regeneration of the adsorbent. The beds of adsorbent used were each nominally 0.165m diameter and Im. deep. Separations were carried out at approximately ambient temperature using air flow rates in the range 0.15 to 0.95 kg/m2s and inlet carbon dioxide concentrations'in the range 0.1 to 1.5% v/v. Adsorption pressures of 2 to 6.4 bar were examined, the desorption pressure being maintained throughout at essentially 1.0 bar. The period time was varied from 30 to 900 seconds and the revert ratio (i. e. the ratio of the product gas returned for desorption to the total feed rate to the unit) was varied from 0 to 1.0. The carbon dioxide separation efficiency was found to increase markedly as the adsorption pressure and the revert ratio were increased whereas it was relatively insensitive to variations in feed rate and, more particularly, feed concentration. The performance of the molecular sieve adsorbent was found to be very sensitive to the presence of moisture in the feed gas. In contrast the carbon dioxide efficiencies observed with Lhe activated carbon were unaffected by the presence of small amounts (circa 100 ppm) of moisture in the feed. A theoretical model has been proposed for predicting the performance of pressure swing adsorption systems of the type investigated and approximate analytical equations and more precise numerical techniques have been established to represent its solution. The approximate analytical solutions were found to give close agreement with the more precise methods examined under conditions corresponding to low values of a dimensionless period time parameter. The proposed theoretical model incorporates an effective irean mass transfer coefficient to represent the diffusion process within the adsorbent particles. Methods for estimation of the value of this coefficient based on the limiting conditions of a periodic constant surface flux or a periodic constant surface concentration are presented. The experimental performance data were analysed in terms of the proposed analytical solution to give values of the apparent solid phase mass transfer coefficient for comparison with those predicted theoretically. In general the apparent experimental values were consistently less than the predicted values. In addition the relationship between the experimental and predicted coefficients was found to be dependent on both the nature of the adsorbent and a parameter formed by the product of the revert ratio and the adsorption to desorption pressure ratio. Empirical correlating equations which incorporate this dependence are presented.
18

S?ntese, caracteriza??o e avalia??o catal?tica do silicoaluminofosfato SAPO-11 sulfatado

Silva, Edjane Fabiula Buriti da 29 February 2008 (has links)
Made available in DSpace on 2014-12-17T15:41:42Z (GMT). No. of bitstreams: 1 EdjaneFBS.pdf: 3994026 bytes, checksum: e61df5b55740f230b29442d65ddbda8d (MD5) Previous issue date: 2008-02-29 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Due to environmental restrictions around the world, clean catalytic technology are of fundamental importance in the petrochemical industry and refineries. Creating the face of this a great interest in replacing the liquid acids for solid acids, so as molecular sieves have been extensively studied in reactions involving the acid catalysis to produce chemical substances with a high potential of quality. Being the activity of the catalysts involved in the reaction attributed to the acid character of them involved for the Lewis and Br?nsted acid sites. Based on this context, this study aimed to prepare catalysts acids using a molecular sieve silicoalumino-phosphate (SAPO-11) synthesized in hidrotermical conditions and sulphated with sulphuric acid at different concentrations, using to it the method of controlled impregnating. The samples resulting from this process were characterized by x-ray difratometry (DRX), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TG-DTG) and determination of total acidity (by n-butilamin adsorption). The results show that the synthesis method used was efficient in the formation of AEL structure of SAPO-11 and when being incorporated the sulfate groups in this structure the acidity of the material was increased, pointing out that to very high concentrations of acid there is a trend of decrease the main peaks that form the structure. Finally they were tested catalytictly by the reaction model of conversion of m-xylene which showed favorable results of conversion for this catalyst, showing to be more selective of cracking products than isomerization, as expected, in order that for the o-xylene selectivity there was no positive change when to sulfate a sample of SAPO-11, while for light gases of C1-C4 this selectivity was remarkably observed / Devido ?s restri??es ambientais em todo o mundo, tecnologias catal?ticas n?o poluentes s?o de fundamental import?ncia na ind?stria petroqu?mica e nas refinarias. Diante disto, surge o grande interesse em substituir os ?cidos l?quidos por s?lidos ?cidos. Para isso, as peneiras moleculares t?m sido extensivamente estudadas nas rea??es que envolvem cat?lise ?cida a fim de produzir subst?ncias qu?micas com alto potencial de qualidade. Sendo a atividade dos catalisadores envolvidos na rea??o atribu?da ao car?ter ?cido deles distribu?dos em s?tios ?cidos de Lewis e Br?nsted. Com base neste contexto, este trabalho teve como objetivo preparar catalisadores ?cidos utilizando uma peneira molecular silicoaluminofosf?tica (SAPO-11) sintetizada hidrotermicamente e sulfatada com ?cido sulf?rico a diferentes concentra??es, empregando-se para isso o m?todo da impregna??o controlada. As amostras resultantes deste processo foram caracterizadas por difratometria de raios-x (DRX), microscopia eletr?nica de varredura (MEV), espectroscopia na regi?o do infravermelho por transformada de Fourier (FT-IR), an?lise t?rmica (TG-DTG) e determina??o de acidez total (via adsor??o de n-butilamina). Os resultados mostram que o m?todo de s?ntese utilizado foi eficiente na forma??o da estrutura AEL do SAPO-11 e ao serem incorporados os grupos sulfatos a esta estrutura, a acidez do material foi aumentada. Ressaltando-se que, para concentra??es muito elevadas do ?cido, h? uma tend?ncia dos principais picos que formam a estrutura diminu?rem. Por fim, as amostras foram testadas cataliticamente pela rea??o modelo de convers?o do mxileno a qual apresentou resultados favor?veis de convers?o para este catalisador, se mostrando ser mais seletivo a produtos de craqueamento do que de isomeriza??o, como se esperava, tendo em vista que para a seletividade a o-xileno n?o houve altera??o positiva ao se sulfatar a amostra de SAPO-11, enquanto que para os gases leves de C1-C4 esta seletividade foi notavelmente observada
19

Formation and characterization of hybrid membranes utilizing high-performance polyimides and carbon molecular sieves

Perry, John Douglas 18 May 2007 (has links)
Current membrane technology, based on polymeric materials, is subject to a limiting tradeoff between productivity (permeability) and efficiency (selectivity). Other materials with better gas separation performance exist, such as zeolites and carbon molecular sieves, but the physical characteristics of these materials inhibit industrial scale membrane preparation. This research focuses on the application of hybrid membrane technology, which has shown the ability to combine the advantageous properties of these materials, to a system comprised of carbon molecular sieves dispersed in the upper bound polymer 6FDA-6FpDA. Hybrid membranes require effective mass transfer across the interface between the two phases. This work shows the sensitivity of the component materials to processing conditions and the importance of consistency in gas separation membrane production. In particular, milling the sieves to reduce the size and using chemical linkage agents to bond to the polymer have potential to alter the separation performance of the respective materials. Analysis of multiple factors in this work provides important information regarding the source of unexpected properties in the hybrid membranes. Hybrid membrane testing in this work shows a need for active control of particle agglomerates within the dope prior to casting for effective membrane production. Continual sonication during the preparation of the casting dope was able to prevent the excessive agglomerates present in earlier trials. Further reduction of stresses generated during the casting process was also necessary to produce membranes with enhanced selectivity. Annealing the hybrid films above the polymer Tg appears to repair the interfacial morphology and produce effective membranes. The application of this process to enhance the gas separation performance of 6FDA-6FpDA represents the first known report of successful selectivity improvement in an upper bound polymer using the hybrid membrane approach.
20

Carbon molecular sieve membranes for natural gas separations

Kiyono, Mayumi 06 October 2010 (has links)
A new innovative polymer pyrolysis method was proposed for creation of attractive carbon molecular sieve (CMS) membranes. Oxygen exposure at ppm levels during pyrolysis was hypothesized and demonstrated to make slit-like CMS structures more selective and less permeable, which I contrary to ones expectation. Indeed prior to this work, any exposure to oxygen was expected to result in removal of carbon mass and increase in permeability. The results of this study indicated that the separation performance and CMS structure may be optimized for various gas separations by careful tuning of the oxygen level. This finding represents a breakthrough in the field of CMS membranes. Simple replacement of pyrolysis atmospheres from vacuum to inert can enable scale-up. The deviation in CMS membrane performance was significantly reduced once oxygen levels were carefully monitored and controlled. The method was shown to be effective and repeatable not only with dense films but also with asymmetric hollow fiber membranes. As a result, this work led the development of the "inert" pyrolysis method which has overcome the challenges faced with previously studied pyrolysis method to prepare attractive CMS membranes. The effect of oxygen exposure during inert pyrolysis was evaluated by a series of well-controlled experiments using homogeneous CMS dense films. Results indicated that the oxygen "doping" process on selective pores is likely governed by equilibrium limited reaction rather than (i) an external or (ii) internal transport or (iii) kinetically limited reaction. This significant finding was validated with two polyimide precursors: synthesized 6FDA/BPDA-DAM and commercial Matrimid®, which implies a possibility of the "inert" pyrolysis method application extending towards various precursors. The investigation was further extended to prepare CMS fibers. Despite the challenge of two different morphologies between homogeneous films and asymmetric hollow fibers, the "inert" pyrolysis method was successfully adapted and shown that separation performance can be tuned by changing oxygen level in inert pyrolysis atmosphere. Moreover, resulting CMS fibers were shown to be industrially viable. Under the operating condition of ~80 atm high pressure 50/50 CO2/CH4 mixed gas feed, the high separation performance of CMS fibers was shown to be maintained. In addition, elevated permeate pressures of ~20 atm did effect the theoretically predicted separation factor. While high humidity exposures (80%RH) resulted in reduced permeance, high selectivity was sustained in the fibers. Recommendations to overcome such negative effects as well as future investigations to help CMS membranes to be commercialized are provided.

Page generated in 0.0635 seconds