• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 20
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 165
  • 165
  • 93
  • 73
  • 71
  • 60
  • 30
  • 21
  • 17
  • 16
  • 15
  • 14
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Mitochondrial regulation pathways in the lens: pink1/parkin- and bnip3l-mediated mechanisms

Unknown Date (has links)
The mitochondrion is the powerhouse of the cell. Therefore, it is critical to the homeostasis of the cell that populations of mitochondria that are damaged or in excess are degraded. The process of targeted elimination of damaged or excess mitochondria by autophagy is called mitophagy. In this report, analysis of the mitophagy regulators PINK1/PARKIN and BNIP3L and their roles are assessed in the lens. PARKIN, an E3 ubiquitin ligase, has been shown to play a role in directing damaged mitochondria for degradation. While BNIP3L, an outer mitochondrial membrane protein, increases in expression in response to excess mitochondria and organelle degradation during cellular differentiation. We have shown that PARKIN is both induced and translocates from the cytoplasm to the mitochondria in human epithelial lens cells upon oxidative stress exposure. In addition, our findings also show that overexpression of BNIP3L causes premature clearance of mitochondria and other organelles, while loss of BNIP3L results in lack of clearance. Prior to this work, PARKIN mediated mitophagy had not been shown to act as a protective cellular response to oxidative stress in the lens. This project also resulted in the novel finding that BNIP3L-mediated mitophagy mechanisms are required for targeted organelle degradation in the lens. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015 / FAU Electronic Theses and Dissertations Collection
72

DNAJC25 Pro90Leu J-domain mutation demonstrates decreased chaperone activity in vitro

Unknown Date (has links)
Molecular chaperones guide peptide fold conformation throughout the lifetime of the peptide. One network of chaperone proteins involved in this activity, Heat shock protein 70s (Hsp70s), are well characterized at restoring peptide fold, utilizing J-domain containing protein chaperone cofactors to activate Hsp70 activity. DnaJ (Hsp40) homolog, subfamily C, member 25 (DNAJC25) is a class III transmembrane J-domain containing protein that to date is underrepresented in the literature. Recently, Hejtmancik et al. 2012. (unpublished data) have revealed that missense mutation to DNACJ25 at Pro90Leu (P90L) is strongly correlated with inherited Closed-Angle Glaucoma. Inherited mutations are well characterized for Open-Angle Glaucoma, however, prior to this finding, were unknown for Closed-Angle Glaucoma. In this report, analysis of the in vitro chaperone activity of DNAJC25 w+ and P90L is assessed utilizing an Hsp70 mediated Glucose-6-Phosphate Dehydrogenase refolding system, SWISS-MODEL predictions are performed for the J-domain structure of DNAJC25 w+ and P90L with consequent analysis of DNAJC25 Pro90 conservation relative to other type I, II, and III J-domain containing proteins. DNAJC25 P90L demonstrated decreased chaperone activity in vitro compared to w+ DNAJC25. / by Daniel C. Chauss. / Vita. / Thesis (M.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
73

aB- crystallin/sHSP is required for mitochondrial function in human ocular tissue

Unknown Date (has links)
by Rebecca McGreal. / Vita. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web. / The central premise of this dissertation is that the small heat shock protein (sHSP), (Sa(BB-crystallin is essential for lens and retinal pigmented epithelial (RPE) cell function and oxidative stress defense. To date, the mechanism by which it confers protection is not known. We hypothesize that these functions could occur through its ability to protect mitochondrial function in lens and RPE cells. To test this hypothesis, we examined the expression of (Sa(BB-crystallin/sHSP in lens and RPE cells, we observed its localization in the cells, we examined translocation to the mitochondria in these cells upon oxidative stress treatment, we determined its ability to form complexes with and protect cytochrome c (cyt c) against damage, and we observed its ability to preserve mitochondrial function under oxidative stress conditions in lens and RPE cells. In addition to these studies, we examined the effect of mutations of (Sa(BB-crystallin/sHSP on its cellular localization and translocation patterns under oxidative stress, its in vivo and in vitro chaperone activity, and its ability to protect cyt c against oxidation. Our data demonstrated that (Sa(BB-crystallin/sHSP is expressed at high levels in the mitochondria of lens and RPE cells and specifically translocates to the mitochondria under oxidative stress conditions. We demonstrate that (Sa(BB-crystallin/sHSP complexes with cyt c and protects it against oxidative inactivation. Finally, we demonstrate that (Sa(BB-crystallin/sHSP directly protects mitochondria against oxidative inactivation in lens and RPE cells. Since oxidative stress is a key component of lens cataract formation and age-related macular degeneration (AMD), these data provide a new paradigm for understanding the etiology of these diseases.
74

Estudo estrutural da co-chaperona Aha1 (Activator of Hsp90 ATPase 1) de Leishmania braziliensis e da sua ação sobre o ciclo funcional da Hsp90 / Structural studies of the Aha1 cochaperone (Activator of Hsp90 ATPase 1) from Leishmania braziliensis and its action on the Hsp90 functional cycle.

Thiago Vargas Seraphim 16 October 2015 (has links)
As chaperonas moleculares atuam no enovelamento de proteínas, montagem de complexos, prevenção/recuperação de proteínas de agregados e encaminhamento de proteínas mal enoveladas para depuração. As Hsp90 são chaperonas moleculares que atuam estabilizando proteínas relacionadas a vias de sinalização, crescimento celular, processos transcricionais e traducionais, estabilidade do genoma, entre outras, sendo essencial para a viabilidade celular. Em protozoários do gênero Leishmania, as Hsp90 são imprescindíveis no desenvolvimento, adaptação e transformação celular. Estes fatores fazem das Hsp90 alvos potenciais para o tratamento de patologias, como a leishmaniose, uma doença tropical negligenciada. As Hsp90 são homodímeros flexíveis onde cada protômero é dividido em três domínios denominados N, M e C. As Hsp90 possuem um ciclo conformacional associado ao seu ciclo funcional e sua baixa atividade ATPásica, o qual é direcionado e regulado por proteínas auxiliares, as co-chaperonas. A co-chaperona Aha1 atua estimulando a atividade ATPásica da Hsp90, participando da maturação de proteínas quinase e receptores de hormônios. O objetivo deste trabalho foi caracterizar estruturalmente a proteína Aha1 de L. braziliensis (LbAha1) e seu mecanismo de interação com a Hsp90 desse organismo (LbHsp90). A LbAha1 é formada por dois domínios, LbAha1N e LbAha1C, conectados entre si por um linker flexível. Experimentos de identificação in vivo mostraram que a LbAha1 e LbHsp90 são proteínas cognatas. A LbAha1 e as construções de seus domínios (LbAha1N e LbAha1C) recombinantes foram obtidas puras e enoveladas. A LbAha1 é estruturada em dois domínios com diferentes estabilidades, que não interagem entre si e se enovelam independentemente, porém influenciam-se reciprocamente. Em solução, a LbAha1 se comporta como um monômero alongado e possui notável flexibilidade, com dimensão suficiente para interagir com os domínios N e M da LbHsp90. A análise da interação entre a LbAha1 e LbHsp90 revelou que a associação destas proteínas é dirigida entalpicamente, ocorrendo através de interações eletrostáticas e com estequiometria de 2 moléculas de LbAha1 por dímero de LbHsp90. O mapeamento de regiões envolvidas na interação indicou que o domínio LbAha1N e o domínio M da LbHsp90 compõem o cerne da interação e somente a LbAha1 íntegra é capaz de encaminhar a LbHsp90 para um estado fechado. Experimentos de cinética enzimática mostraram que somente a LbAha1 íntegra estimula a atividade ATPásica da LbHsp90 por meio de um mecanismo cooperativo positivo. Assim, é proposto que a conexão entre os domínios da LbAha1, via linker, é essencial para o direcionamento da LbHsp90 para um estado conformacional fechado e competente na hidrólise de ATP. / Molecular chaperones play a role in protein folding, complex assembly, prevention/recover of proteins from aggregates and targeting misfolded proteins to depuration. Hsp90 molecular chaperones work stabilizing proteins related to signaling pathways, cell growth, transcription and translation processes, genome stability, among others, and are essential to cell viability. In protozoa of the genus Leishmania, Hsp90s are indispensable for cell developing, adaptation and transformation. These factors make Hsp90s potential targets for pathologies treatment, such as leishmaniasis, a neglected tropical disease. Hsp90s are flexible homodimers and each protomer is divided into three domains named N, M and C. Hsp90s have a conformational cycle associated to its functional cycle and low ATPase activity, which is directed and regulated by auxiliary proteins, so-called cochaperones. Aha1 co-chaperone stimulates Hsp90 ATPase activity, participating on protein kinase and hormone receptors maturation. This work aimed to characterize the structure of the Aha1 from L. braziliensis (LbAha1) and its mechanism of interaction with the Hsp90 from the same organism (LbHsp90). LbAha1 is formed by two domains, LbAha1N and LbAha1C, connected to each other by a flexible linker. In vivo experiments identified LbAha1 and LbHsp90 as cognate proteins. Recombinant LbAha1 and its domains construct (LbAha1N and LbAha1C) were obtained pure and folded. LbAha1 is divided into two domains with dissimilar stabilities and they do not interact to each other. In spite of this they fold independently and influence each other reciprocally. LbAha1 behaves as an elongated monomer in solution and has a remarkable flexibility, with sufficient dimension to interact to LbHsp90 N and M domains. The analysis of the LbAha1-LbHsp90 interaction revealed that the association between these two proteins is enthalpically driven, occurring through electrostatic interactions in a stoichiometry of 2 LbAha1 molecules per LbHsp90 dimer. Domain mapping experiments indicated that LbAha1N and LbHsp90 M domains compose the core of the interaction and only full length LbAha1 is able to direct LbHsp90 toward a closed state. Enzyme kinetics experiments showed that only full length LbAha1 stimulates LbHsp90 ATPase activity through a positive cooperative mechanism. Thus, it is proposed that the connection between the LbAha1 domains, via linker, is essential to direct the LbHsp90 toward a closed and ATPase-competent conformational state.
75

Small heat shock protein interactions with in vivo partners

Collier, Miranda January 2018 (has links)
Small heat-shock proteins (sHsps) are part of a broad cellular sys- tem that functions to maintain a stable proteome under stress. They also perform a variety of regulatory roles at physiological conditions. Despite the multitude of sHsp targets, their interactions with partners are not well understood due to highly dynamical structures. In this thesis, I apply a variety of biophysical and structural approaches to examine distinct interactions made by the abundant human sHsps αβ-crystallin and Hsp27. First, I find that αβ-crystallin binds a cardiac-specific domain of the muscle sarcomere protein titin. A cardiomyopathy-causative variant of αβ-crystallin is shown to disrupt this interaction, with demonstrated implications for tissue biomechanics. Next, I investigate the conformation and unfolding behaviour of another sarcomere-associated protein, filamin C, finding support for the hypothesis that it is mechanosensitive. This leads into an interrogation of the interaction between filamin C and Hsp27, which we find is modulated by phosphorylation of Hsp27. This modulation only manifests during filamin C unfolding, pointing toward a protective chaperoning mode against over-extension during mechanical stress. This finding is bolstered by up-regulation and interaction of both proteins in a mouse model of heart failure. I establish a system for similar studies of a third sHsp, cvHsp, which is muscle-specific and implicated in various myopathies but scantly understood at the molecular level compared to αβ-crystallin and Hsp27. Finally, I probe the stoichiometries and kinetics of complexes formed between αβ-crystallin and Hsp27 themselves, which co-assemble into a highly polydisperse ensemble. This involved the development of a high-resolution native mass spectrometry method for disentangling heterogeneous systems. Together these findings add to our understanding of the roles and mechanisms of ATP-independent molecular chaperones.
76

Análise da expressão gênica em resposta ao choque térmico e cádmio no fungo aquático Blastocladiella emersonii / Analysis of gene expression in response to cadmium and heat shock in the aquatic fungus Blastocladiella emersonii

Georg, Raphaela de Castro 01 December 2006 (has links)
Neste trabalho realizamos um programa de seqüenciamento em larga escala de cDNAs obtidos de bibliotecas construídas a partir de mRNA de células de B. emersonii submetidas ao choque térmico e ao estresse por cádmio. Obtivemos 6350 seqüências expressas (ESTs) de alta qualidade, que representam 2326 seqüências únicas putativas (unigenes) do fungo. Destes unigenes putativos, 1282 genes foram classificados em pelo menos uma das categorias do Consórcio Gene Ontology (GO). A análise do transcriptoma parcial de B. emersonii determinado até o momento permitiu a identificação de 78 unigenes codificando chaperones moleculares de todas as famílias conhecidas. Para avaliarmos a expressão global dos genes em resposta a estresses ambientais, como o choque térmico e o cádmio, realizamos ensaios de microarranjos de DNA nestas condições de estresse. Observamos que em resposta ao choque térmico, B. emersonii induz a expressão de genes que codificam proteínas relacionadas com o enovelamento de proteínas e com a proteólise, o que seria esperado em condições de temperaturas elevadas, assim como genes que codificam proteínas com propriedades antioxidantes, além de proteínas envolvidas no metabolismo de nucleotídeos e no metabolismo de carboidratos. Em resposta ao estresse por cádmio, verificou-se a indução de genes que codificam principalmente proteínas com propriedades antioxidantes, proteínas envolvidas no metabolismo de aminoácidos, proteínas relacionadas com o transporte celular e proteínas envolvidas no enovelamento de proteínas e proteólise. Uma das conseqüências do estresse por cádmio é o aumento do estresse oxidativo e proteínas antioxidantes têm um papel fundamental na resposta a este tipo de estresse. Dentre os genes observados durante o seqüenciamento das ESTs de B. emersonii, observamos dez genes codificando proteínas distintas da família Hsp70. Nove genes hsp70 são expressos em pelo menos um dos estágios do desenvolvimento do fungo e sete apresentam uma indução significativa após o choque térmico. Estes dados sugerem que estes genes desempenham um papel importante durante o desenvolvimento e em resposta ao estresse térmico em B. emersonii. Outro dado interessante obtido neste trabalho foi o enriquecimento de ESTs que continham íntrons em sua seqüência nas bibliotecas de estresse. Portanto, o choque térmico e o estresse por cádmio em B. emersonii diminuem a eficiência de processamento dos íntrons permitindo sua caracterização. O cDNA da proteína Hsp17 foi o que apresentou o maior número de ESTs seqüenciadas nas bibliotecas de estresse. Experimentos de Northern blot indicaram que o gene hsp17 possui um nível de expressão muito baixo durante o ciclo de vida de B. emersonii, no entanto, como esperado sua expressão aumenta drasticamente quando as células de esporulação ou germinação são submetidas a choque térmico. Os níveis da proteína Hsp17 acompanham os níveis do seu mRNA, indicando que o controle da expressão do gene hsp17 deve ocorrer em nível de transcrição. / In this work we realized a large scale, sequencing program of cDNAs libraries obtained from mRNA of B. emersonii cells submitted to heat shock and cadmium stress. A total of 6350 high quality expressed sequence tags (ESTs) were obtained, representing 2326 unique putative genes (unigenes) of this fungus. From these putative unigenes, 1282 genes were classified at least in one of the three Gene Ontology Consortium (GO) categories. The analysis of the partial transcriptome of B. emersonii, determined until now, allowed the identification of 78 unigenes encoding molecular chaperones of all known protein families. To evaluate the global expression of the genes in response to environmental stresses, such as heat shock and cadmium, DNA microarray assays were performed. We observed that in response to heat shock B. emersonii induces the expreession of genes encoding proteins related to protein folding and proteolysis, as expected under high temperature conditions, as well as genes encoding proteins with antioxidant properties and proteins involved in nucleotide and carbohydrate metabolism. In response to cadmium stress, we mainly verified the induction of genes for proteins with antioxidant properties, proteins involved in amino acid metabolism, proteins related to cellular transport and proteins related to protein folding and proteolysis. One of the consequences of the exposure to cadmium is the increase of oxidative stress, and antioxidant proteins have a fundamental role in the response to this kind of injury. Amongst the genes observed during the B. emersonii EST sequencing program, ten genes encoding distinct proteins from the Hsp70 family were observed. Nine of them are expressed at least in one stage of the fungus development and seven genes presented a significant induction during heat shock treatment. These data suggest that the hsp70 genes perform an important role during development and in response to heat stress in B. emersonii. Another interesting result from this work was the enrichment of ESTs containing introns in the stress libraries. Thus, heat shock and cadmium stress decrease the efficiency of intron processing in B. emersonii, allowing for intron characterization. The cDNA for the Hsp17 protein presented the highest number of ESTs sequenced from the stress libraries. Northern blot experiments indicated that the hsp17 gene is expressed at very low levels throughout the life cycle of B. emersonii, however, as expected its expression increases drastically when sporulation or germination cells are submitted to heat shock. Hsp17 protein levels accompany its mRNA levels, indicating that the control of expression of the hsp17 gene occurs at a transcriptional level.
77

A CryAB Interactome Reveals Clientele Specificity and Dysfunction of Mutants Associated with Human Disease

Hoopes, Whitney Katherine 01 November 2016 (has links)
Small Heat Shock Proteins (sHSP) are critical molecular chaperones that function to maintain protein homeostasis (proteostasis) and prevent the aggregation of other proteins during cellular stress. Any disruption in the process of proteostasis can lead to prevalent diseases ranging from cancer and cataract to cardiovascular and Alzheimer's disease. CryAB (αB-crystallin, HspB5) is one of ten known human sHSP that is abundant in the lens, skeletal, and cardiac muscle. This protein is required for cardiac function and muscle cell integrity. When the cell experiences physiological stress, including heat shock, CryAB moves to the cytoskeleton to act as a chaperone and prevent aggregation of its protein clientele. This research is designed to investigate the molecular role of CryAB in cell proteostasis through the identification of putative protein clientele and chaperone activity analysis. We have identified over twenty CryAB-binding partners through combined yeast two-hybrid (Y2H) and co-purification approaches, including interactions with myofibril proteins. Previously reported disease-associated CryAB missense variants were analyzed in comparison to wild type CryAB through Y2H binding assays. The characterization of the similarities and differences in binding specificities of these variants provide a foundation to better understand the chaperone pathways of CryAB and how these changes in molecular function result in the development of disparate diseases such as cataract, cancer, and various myopathies.
78

Affinity Purification and Characterization of <em>E. coli</em> Molecular Chaperones

Nam, Seung-Hee 01 May 2002 (has links)
The molecular chaperones are a group of proteins that are effective in vitro and in vivo folding aids and show a well documented affinity for proteins lacking tertiary structure. Heat-induced Escherichia coli BL21 cell lysate (10 mg protein) was applied to immobilized ɑ-casein (45 mg/g beads) or β-casein (30 mg/g beads) column. After removing a majority of nonspecifically bound proteins with 1 M NaCl, the molecular chaperones were eluted with cold water, 1 mM Mg-ATP, or 6 M urea. Western analysis identified five Escherichia coli molecular chaperones including DnaK, DnaJ, GrpE, GroEL, and GroES. Among samples, ATP eluates showed the highest chaperone purity of 80-87% followed by cold water eluates with 62-68% purity. The β-Casein column showed a higher binding capacity than the ɑ-casein column since β-casein urea eluates contained 3.18 mg total protein (or 58% chaperone) compared to a-casein urea eluates with 2.68 mg total protein (or 32% chaperone). For strain comparison, Escherichia coli NM522 eluates showed more unidentified proteins in cold water eluates from both affinity columns. Chaperones were induced from BL21 strain with three treatments: heat shock at 39°C, heat shock at 42°C, and alcohol shock with 3% ethanol (v/v). Lysates were applied to an immobilized β-casein (30 mg/g beads) column. The molecular chaperones were eluted with cold water or 1 mM Mg-ATP after washing with 1 M NaCl. The purity of eluted chaperones was 58% with cold water and 100% with Mg-ATP. The treatment at 42°C was the most efficient for chaperone induction with highest chaperone yield of 1.0 mg among samples. Refolding denatured carbonic anhydrase B enzyme in the presence of Mg-ATP resulted in a 97% recovery of heat-denatured enzyme and a 68% recovery of chemically denatured enzyme. It was concluded that the novel casein affinity chromatography is a rapid and efficient method for purification of chaperone. The affinity purified chaperones were effective in vitro folding aids.
79

Spectroscopic studies of the human copper chaperone for superoxide dismutase : probing the active cluster with selenocysteine variants

Barry, Amanda Nell 10 1900 (has links) (PDF)
Ph.D. / Biochemistry and Molecular Biology / Selenocysteine-containing mutants of human copper chaperone for superoxide dismutase (hCCS) were constructed using intein-mediated peptide ligation. These mutants were studied with respect to their ability to transfer Cu to E,Zn superoxide dismutase (SOD1) and their Cu-binding and X-ray absorption spectroscopic (XAS) properties. Previous studies have shown that three functionally distinct polypeptide domains are present in CCS: the N-terminal domain 1 (D1, residues 1-85) contains the copper-binding MXCXXC motif, domain 2 (D2, residues 86-234) has sequence homology to residues associated with the native SOD1 dimer interface, and the C-terminal domain 3 (D3, residues 235-274) contains a CXC motif. Recent results suggest the formation of a D3- D3 cluster within a dimeric or tetrameric protein and suggest that this cluster may be an important element of the copper transfer machinery. D3 cysteine-to-selenocysteine mutants of wild-type and D1 mutants of hCCS were constructed to investigate the D3 copper cluster in more detail. These mutants display similar activity to wild-type protein. The structure of the Cu centers of selenocysteine-containing mutants as shown by Cu EXAFS is similar to that of wild-type protein, with clear indications of a Cu cluster. Cu and Se EXAFS of these constructs reveal a unique adamantane-like cluster formed between two molecules of CCS at the D3-D3 interface. These results confirm the existence of a D3-D3 copper cluster in hCCS and suggest that a unique copper cluster may exist in this protein.
80

Multiple allosteric signaling events in the Hsp104 ATP hydrolysis cycle revealed by mutagenesis of conserved AAA active site residues /

Hattendorf, Douglas Alan. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Biochemistry and Molecular Biology, 2001. / Includes bibliographical references. Also available on the Internet.

Page generated in 0.089 seconds