• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 13
  • 2
  • 1
  • Tagged with
  • 124
  • 124
  • 51
  • 47
  • 47
  • 42
  • 39
  • 39
  • 38
  • 20
  • 20
  • 19
  • 18
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Proximity Ligation as a Universal Protein Detection Tool

Gullberg, Mats January 2003 (has links)
<p>Among the great challenges in biology are the precise quantification of specific sets of proteins and analyses of their patterns of interaction on a much larger scale than is possible today. </p><p>This thesis presents a novel protein detection technique - proximity ligation - and reports the development and application of a nucleic acid amplification technique, RCA. Proximity ligation converts information about the presence or co-localization of specific proteins to unique sets of nucleic acid sequences. For detection of target proteins or protein complexes the coincident binding by pairs or triplets of specific protein-binding reagents are required. Oligonucleotide-extensions attached to those binding reagents are joined by a DNA ligase and subsequently analyzed by standard molecular genetic techniques. The technique is shown to sensitively detect an assortment of proteins using different types of binders converted to proximity probes, including SELEX aptamers and mono- and polyclonal antibodies. I discuss factors important for using the technique to analyze many proteins simultaneously.</p><p>Quantification of target molecules requires precise amplification and detection. I show how rolling circle amplification, RCA, can be used for precise quantification of circular templates using modified molecular beacons with real-time detection. The combination of proximity-probe templated circularization and RCA results in a sensitive method with high selectivity, capable of visualizing individual immobilized proteins. This technique is used for localized detection of a set of individual proteins and protein complexes at sub-cellular resolution.</p>
42

Genetic Analyses using Rolling Circle or PCR Amplified Padlock Probes

Banér, Johan January 2003 (has links)
<p>Padlock probes are useful in a variety of genetic applications, some of which require that the probes are amplified in order to generate detectable signals. Two general padlock amplification methods, RCA and PCR, are discussed in this thesis.</p><p>The isothermal rolling circle amplification (RCA) mechanism is described in detail as well as how a target strand affects primer extension. A mechanism to resolve the topological constraint imposed by the target strand, to which a padlock probe has been linked, is also discussed. We also present a more powerful amplification technique, termed serial circle amplification, which provides a highly precise tool for nucleic acid studies. Rolling circle products are digested to unit lengths, and each monomer converted to new circular oligonucleotides that can serve as templates in consecutive rounds of RCA. The final products are single-stranded DNA molecules, readily available for hybridization-based detection, for instance using molecular beacons or array hybridization.</p><p>Padlock probes have the potential to be combined in large numbers for parallel gene analysis. A significant improvement of the level of multiplexed genotyping is presented using padlock probes and a molecular inversion strategy. Padlock probes containing common primer sequences along with locus-specific tag sequences were combined in multiplexed ligation reactions. After exonucleolytic selection for circular molecules, the probes were cleaved at uracil residues situated between the primer sequences, which facilitated release from the genomic DNA. A single PCR primer pair amplified all molecularly inverted probes, and the products were finally sorted on microarrays for simultaneous readout. Up to 1,500 genotypes could be detected in parallel, with sufficient signal strength for further scale-up. Finally, an application of the same parallel genotyping strategy is described where a set of padlock probes was used to study tumor induced immune responses. The distribution of TCR Vβ transcripts in tumor infiltrating T-cells and in normal control tissues were investigated in a microarray format.</p>
43

Signal Transduction in Malignant Cells – Transformation, Activation and Differentiation

Kårehed, Karin January 2006 (has links)
<p>All aspects of cell life are regulated by signal transduction mechanisms. This thesis describes the regulatory roles of a few key signal transduction molecules involved in three major biological responses. The studied pathways include platelet derived growth factor (PDGF)-BB induced transformation of murine fibroblasts, interferon (IFN)-γ stimulated monocyte activation and all-trans retinoic acid (ATRA) induced myeloid differentiation. </p><p>We found that intact phosphoinositide 3OH-kinase (PI3K) activity is essential in the signaling pathway that leads to the morphological alterations and migration pattern characteristic of PDGF-BB transformed NIH/sis and NIH/COL1A1 fibroblasts. Furthermore, our data indicated that the small Rho-GTPase, Rac1 is the predominant mediator of these signals downstream of PI3K.</p><p>The study of the IFN-γ induced activation of monocytic U-937 cells showed that upregulation of the high affinity receptor for IgG (FcγRI) is dependent on the coordination of several regulatory events: the PKR-mediated serine 727 phosphorylation of Stat1, the expression of the hematopoietic lineage specific transcription factor PU.I, and the activation of the NFκB pathway.</p><p>ATRA-induced differentiation and cell cycle arrest are impaired in U-937 sublines expressing phosphorylation deficient Stat1 (Stat1Y701F and Stat1S727A). The findings in paper III indicated that the expression pattern of the myeloid specific transcription factors Stat2, ICSBP and c/EBPε was altered in the sublines and that intact Stat1 activation is critical for maintaining the balance of the transcriptional network during ATRA induced terminal differentiation.</p><p>Finally, ATRA-induced differentiation and growth arrest were blocked by treatment with the IKKα/β inhibitor BMS345541 or by ectopic expression of the NFκB super repressor IκBα (S32A/S36A). The fact that IκB(AA) sublines differentiated normally in response to vitamin D3, showed that NFκB inhibition specifically affected ATRA induced responses. Notably we suggest that the activity of the NFκB pathway may interfere with the differentiation process via a direct effect on the RAR/RXR mediated transcription.</p>
44

The hematopoietic transcription factor RUNX1 : a structural view

Bäckström, Stefan January 2004 (has links)
The malfunction of the transcriptional regulator RUNX1 is the major cause of several variants of acute human leukemias and its normal function is to regulate the development of the blood system in concert with other transcriptional co-regulators. RUNX1 belongs to a conserved family of heterodimeric transcription factors that share a conserved DNA binding domain, the Runt domain (RD), named after the first member of this group – Runt - found in Drosophila melanogaster. The binding partner CBFβ serves as a regulator of RUNX by enhancing its DNA binding affinity through an allosteric mechanism. The main focus ofo my thesis work has been the crystallization and structural analysis of the RUNX1 RD and involved also more technical methodological aspects that can be applied to X-ray crystallography in general. The high resolution crystal structure of the free RD shows that this immunoglobulin-like molecule undergoes significant structural changes upon binding to both CBFβ and DNA. This involves a large flip of the L11 loop from a closed conformation in the free protein to an open conformation when CBFβ and/or DNA are bound. We refer to this transition as the “S-switch”. Smaller but significant conformational changes in other parts of the RD accompany the “S-switch”. We suggest that CBFβ triggers and stabilizes the “S-switch” which leads to the conversion of the RD into a conformation enhanced for DNA binding. During the structural analysis of the RD we identified two chloride ions that are coordinated by residues otherwise involved in DNA binding. In electrophoretic mobility-shift analyses (EMSA) we demonstrated a chloride ion concentration dependent stimulation of the DNA binding affinity of RUNX1. We further showed by NMR line width broadening experiments that the chloride binding occurred within the physiological range. A comparable DNA binding stimulation of RUNX1 was seen in the presence of negative amino acids. This suggests a regulation of the DNA binding activity of RUNX1 proteins through acidic amino acid residues possibly provided by activation domains of transcriptional co-regulators that interact with RUNX1. The use of the anomalous signal from halide ions has become a powerful technique for obtaining phase information. By replacing the sodium chloride with potassium bromide in the crystallisation conditions of the RD, we could demonstrate in a single wavelength anomalous diffraction (SAD) experiment that the anomalous signal from 2 bromide ions were sufficient to phase a 16 kDa protein. Due to lack of completeness in the low-resolution shells caused by overloaded intensities, density modification schemes failed and the resulting electron density maps were not interpretable. By combining the highresolution synchrotron data with low-resolution data from a native data set collected on a home X-ray source, the density modified bromide phases gave easily traceable maps.
45

Genetic Analyses using Rolling Circle or PCR Amplified Padlock Probes

Banér, Johan January 2003 (has links)
Padlock probes are useful in a variety of genetic applications, some of which require that the probes are amplified in order to generate detectable signals. Two general padlock amplification methods, RCA and PCR, are discussed in this thesis. The isothermal rolling circle amplification (RCA) mechanism is described in detail as well as how a target strand affects primer extension. A mechanism to resolve the topological constraint imposed by the target strand, to which a padlock probe has been linked, is also discussed. We also present a more powerful amplification technique, termed serial circle amplification, which provides a highly precise tool for nucleic acid studies. Rolling circle products are digested to unit lengths, and each monomer converted to new circular oligonucleotides that can serve as templates in consecutive rounds of RCA. The final products are single-stranded DNA molecules, readily available for hybridization-based detection, for instance using molecular beacons or array hybridization. Padlock probes have the potential to be combined in large numbers for parallel gene analysis. A significant improvement of the level of multiplexed genotyping is presented using padlock probes and a molecular inversion strategy. Padlock probes containing common primer sequences along with locus-specific tag sequences were combined in multiplexed ligation reactions. After exonucleolytic selection for circular molecules, the probes were cleaved at uracil residues situated between the primer sequences, which facilitated release from the genomic DNA. A single PCR primer pair amplified all molecularly inverted probes, and the products were finally sorted on microarrays for simultaneous readout. Up to 1,500 genotypes could be detected in parallel, with sufficient signal strength for further scale-up. Finally, an application of the same parallel genotyping strategy is described where a set of padlock probes was used to study tumor induced immune responses. The distribution of TCR Vβ transcripts in tumor infiltrating T-cells and in normal control tissues were investigated in a microarray format.
46

Pharmacogenomics of Antihypertensive Treatment &amp; Clinical Pharmacological Studies of Digoxin Treatment

Hallberg, Pär January 2005 (has links)
In Part I we found that the CYP2C9 genotype appears to influence the diastolic blood pressure response to the angiotensin II-receptor antagonist irbesartan in patients with hypertension and left ventricular hypertrophy. Those with the *1/*2 genotype (slower metabolism) responded better than those with the *1/*1 genotype (normal metabolism), likely due to a slower elimination of the drug. We further found that a +9/-9 exon 1 polymorphism of the B2 bradykinin receptor gene – shown to affect mRNA expression - appears to influence the regression of left ventricular mass during therapy with irbesartan or the beta-blocker atenolol in the same patients. Subjects with the -9/-9 genotype (higher mRNA expression) had a greater regression than carriers of the +9 allele. In Part II we found that women on digoxin therapeutic drug monitoring have higher serum digoxin concentrations (SDCs) as compared to men (1.54±0.04 [nmol/L±SE] vs 1.20±0.05 [nmol/L±SE], p&lt;0.001), which could be of importance since an SDC &gt;1.4 nmol/L has been associated with increased mortality. We further found that coadministration of P-glycoprotein inhibitors with digoxin was common (47%) among the same patients, and that the SDC increased in a stepwise fashion with the number of P-glycoprotein inhibitors (20-60%). Lastly, we found that patients admitted to Swedish coronary care units with atrial fibrillation without heart failure and who had been given digoxin had a higher 1-year mortality than those not given digoxin (RR 1.44 [95% CI 1.29-1.60], adjustment made for potential confounders). In conclusion, Part I represents a further step in the pharmacogenomic prospect of tailoring antihypertensive therapy. Part II indicates that heightened attention to the digoxin-dose is warranted in women, that there is a need for awareness about P-glycoprotein interactions with digoxin, and that long-term therapy with digoxin is an independent risk factor for death among patients with atrial fibrillation without heart failure.
47

Proximity Ligation as a Universal Protein Detection Tool

Gullberg, Mats January 2003 (has links)
Among the great challenges in biology are the precise quantification of specific sets of proteins and analyses of their patterns of interaction on a much larger scale than is possible today. This thesis presents a novel protein detection technique - proximity ligation - and reports the development and application of a nucleic acid amplification technique, RCA. Proximity ligation converts information about the presence or co-localization of specific proteins to unique sets of nucleic acid sequences. For detection of target proteins or protein complexes the coincident binding by pairs or triplets of specific protein-binding reagents are required. Oligonucleotide-extensions attached to those binding reagents are joined by a DNA ligase and subsequently analyzed by standard molecular genetic techniques. The technique is shown to sensitively detect an assortment of proteins using different types of binders converted to proximity probes, including SELEX aptamers and mono- and polyclonal antibodies. I discuss factors important for using the technique to analyze many proteins simultaneously. Quantification of target molecules requires precise amplification and detection. I show how rolling circle amplification, RCA, can be used for precise quantification of circular templates using modified molecular beacons with real-time detection. The combination of proximity-probe templated circularization and RCA results in a sensitive method with high selectivity, capable of visualizing individual immobilized proteins. This technique is used for localized detection of a set of individual proteins and protein complexes at sub-cellular resolution.
48

Signal Transduction in Malignant Cells – Transformation, Activation and Differentiation

Kårehed, Karin January 2006 (has links)
All aspects of cell life are regulated by signal transduction mechanisms. This thesis describes the regulatory roles of a few key signal transduction molecules involved in three major biological responses. The studied pathways include platelet derived growth factor (PDGF)-BB induced transformation of murine fibroblasts, interferon (IFN)-γ stimulated monocyte activation and all-trans retinoic acid (ATRA) induced myeloid differentiation. We found that intact phosphoinositide 3OH-kinase (PI3K) activity is essential in the signaling pathway that leads to the morphological alterations and migration pattern characteristic of PDGF-BB transformed NIH/sis and NIH/COL1A1 fibroblasts. Furthermore, our data indicated that the small Rho-GTPase, Rac1 is the predominant mediator of these signals downstream of PI3K. The study of the IFN-γ induced activation of monocytic U-937 cells showed that upregulation of the high affinity receptor for IgG (FcγRI) is dependent on the coordination of several regulatory events: the PKR-mediated serine 727 phosphorylation of Stat1, the expression of the hematopoietic lineage specific transcription factor PU.I, and the activation of the NFκB pathway. ATRA-induced differentiation and cell cycle arrest are impaired in U-937 sublines expressing phosphorylation deficient Stat1 (Stat1Y701F and Stat1S727A). The findings in paper III indicated that the expression pattern of the myeloid specific transcription factors Stat2, ICSBP and c/EBPε was altered in the sublines and that intact Stat1 activation is critical for maintaining the balance of the transcriptional network during ATRA induced terminal differentiation. Finally, ATRA-induced differentiation and growth arrest were blocked by treatment with the IKKα/β inhibitor BMS345541 or by ectopic expression of the NFκB super repressor IκBα (S32A/S36A). The fact that IκB(AA) sublines differentiated normally in response to vitamin D3, showed that NFκB inhibition specifically affected ATRA induced responses. Notably we suggest that the activity of the NFκB pathway may interfere with the differentiation process via a direct effect on the RAR/RXR mediated transcription.
49

Interaction of PfEMP1 with the Human Immune System and the Prospect of PfEMP1-based Vaccine for Malaria

Magale, Hussein Issak January 2016 (has links)
Malaria is a leading cause of death in some developing countries. The malaria parasite has been around for over a century, and has coevolved with humans. Coming up with an effective vaccine for P. falciparum will save millions of lives and reduce the morbidity and mortality of malaria globally. Understanding the role of exported parasite proteins i.e PfEMP1 a virulence factor and major cause of malarial pathogenesis, has been of great interest to vaccine researchers in the last decade. The focus of this review is to provide a literature review on PfEMP1s, their interaction with the human immune system, and their role in helping P. falciparum parasite to evade the immune system. This review will primarily focus on the intra-erythrocytic stage, which is the stage that results in the symptoms of malaria. A review is necessary to understand the antigenic variation of PfEMP1s, and how PfEMP1s challenge the different arms of the immune response, both the innate and adaptive. This review is unique in touching on the major parts of the immune system's interaction with the PfEMP1 antigen. Furthermore, the review explores the discussion of future research and therapeutic opportunities based on our knowledge of PfEMP1 antigens.
50

The Future of Myasthenia Gravis: Exploring the Onset, Progression and Implications of Disease

Paluszcyk, Chana Renee January 2016 (has links)
Myasthenia gravis (MG) is an autoimmune disease whose name means "grave muscular weakness". MG is a rare disease affecting only 200-400 persons per million and the characteristic symptoms include muscle weakness, particularly in highly active voluntary muscles. MG affects the neuromuscular junction in an antibody-mediated manner, resulting in impaired nerve-muscle cell communication in affected individuals. Specifically, two main proteins are targeted: nicotinic acetylcholine receptors (ACh receptors) and a muscle-specific tyrosine kinase (MuSK). Previous studies have discovered the mechanism of MG pathogenesis but the exact mechanisms which cause the failure to maintain self-tolerance have not been discovered. Based on current knowledge of MG, this paper will explore potential causes of the disease and provide numerous hypotheses directed at future research opportunities.

Page generated in 0.0662 seconds