• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 13
  • 2
  • 1
  • Tagged with
  • 124
  • 124
  • 51
  • 47
  • 47
  • 42
  • 39
  • 39
  • 38
  • 20
  • 20
  • 19
  • 18
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

EVALUATION OF LYMPHATIC AND GLYMPHATIC ASSOCIATED EXTRACELLULAR VESICLE BIOMARKERS FOR SPORT-RELATED CONCUSSION

Rath, Meghan, 0000-0002-0952-8261 January 2022 (has links)
Purpose: Interdisciplinary research in epidemiology, neurology, neuroscience, and sports medicine commonly highlight the dangerous short- and long-term sequelae of sport-related concussions (SRC). Despite advancements in clinical evaluation and recognition, many SRCs are not properly diagnosed and managed, leaving many athletes in danger of acute and chronic neurological deficits. Epidemiological studies suggest the prevalence of chronic traumatic encephalopathy (CTE) is three times, and Alzheimer's disease is four times greater in former athletes with a history of SRC than non-athletes. The underlying mechanisms linking SRC and contact-sport participation to neurodegeneration are not fully understood. Herein, I hypothesized that transient insufficiency of the lymphatic and glymphatic clearance systems in the central nervous system (CNS) could play a crucial role in the SRC-mediated neurological conditions. Therefore, this study aimed to examine the differences in plasma levels of extracellular vesicles (EV) that are associated with the lymphatic and glymphatic clearance systems of the CNS among athletes following sport-related head impacts. Participants: Plasma EV concentrations were analyzed in collegiate athletes (controls n=29, SRC n=19) with and without SRC. In a parallel study, fourteen college-aged soccer players participated in a laboratory-based, repetitive subconcussion paradigm. All participants provided written informed consent, and the study was approved by institutional review board at Temple University. Methods: We evaluated EVs containing markers associated with the CNS lymphatic and glymphatic systems, including lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), astrocyte-specific glial fibrillary acidic protein (GFAP), aquaporin 4 (AQP4), and the platelet and endothelial cell adhesion molecule 1(PECAM-1 or CD31). Tetraspanin-28 (CD81) was used as an EV-specific marker. Blood samples from athlete controls were collected once during preseason baseline assessments. Samples from athletes with SRC were collected within 72 hours of injury. Whole blood was double-centrifuged to obtain platelet-poor plasma, snap-frozen in liquid nitrogen, and stored at -80°C until analyzed. Quantification of plasma EVs was performed using spectral flow cytometry. Mann-Whitney U tests were used for group comparisons of single and double-positive EV concentrations, and receiver-operating characteristic curve (ROC) and area under the curve (AUC) analyses assessed diagnostic efficacy. Within-group changes in plasma EVs following repetitive, subconcussive head impacts were assessed with Friedman's test using Dunn's correction for multiple comparisons. Results: Among athletes with SRC, plasma concentrations of LYVE1+EVs and CD31+EVs were significantly elevated within 72 hours of injury compared to controls (LYVE1+EVs, p < 0.0001; CD31+EVs, p = 0.005). ROC analysis revealed plasma concentrations of LYVE1+EVs demonstrated significant diagnostic accuracy to differentiate athletes with SRC from athlete controls (AUC: 0.971, 95% C.I. = 0.933-1.000, p < 0.0001). Notably, concentrations of LYVE1+/CD81+ double-positive EVs, CD31+/CD81+ double-positive EVs, and GFAP+/CD81+ double-positive EVs were significantly higher among athletes with SRC within 72 hours of injury compared to control athletes (p < 0.0001; p = 0.0002; p < 0.0001, respectively). Plasma AQP4+/GFAP+ double-positive EVs and AQP4+/CD81+ double-positive EVs were not. However, plasma concentrations of GFAP+/CD81+ double-positive EVs and AQP4+/GFAP+ double-positive EVs were significantly elevated after repetitive, subconcussive head impacts (p < 0.0001 and p = 0.004, respectively). Conclusion: Plasma concentrations of double-positive EVs, including LYVE1+/CD81+EVs, CD31+/CD81+EVs, and GFAP+/CD81+EVs, may be promising biomarkers for acute SRC. EVs associated with the glymphatic system, GFAP+/CD81+EVs and AQP4+/GFAP+EVs, were significantly elevated after repetitive subconcussive head impacts. The differences observed in EV responses to SRC and subconcussion may provide novel mechanistic insights about sport-associated neurodegeneration for current and future athletes. / Kinesiology
72

Análise genético-molecular integrada aplicada ao processo de investigação de pacientes com diagnóstico clínico de MODY (Maturity Onset Diabetes of the Young) / Integrated molecular genetic analysis applied to the investigation process of patients with clinical diagnosis of MODY (Maturity Onset Diabetes of the Young)

Santana, Lucas Santos de 04 September 2017 (has links)
Introdução: O sequenciamento completo do genoma humano foi finalizado em 2003, tornando-se responsável por uma revolução na prática médica, geralmente referenciada como a era da genômica e da medicina personalizada. O aumento na demanda por testes genéticos e a introdução de novos métodos de sequenciamento em larga escala tem gerado um inevitável crescimento no número de variantes raras mapeadas. Tal fato levou à expansão de áreas do conhecimento necessárias, tanto para uma adequada avaliação do real significado clínico desses achados, como para uma indicação mais criteriosa da investigação genética. Devido a isso, torna-se necessário otimizar os processos, desde a seleção dos casos sob suspeita até a coleta, armazenamento e análise dos dados clínico-laboratoriais e moleculares obtidos, visando a uma melhor acurácia no diagnóstico, tratamento e aconselhamento genético. Uma obtenção e interpretação adequada dos achados genético-moleculares, aliados a critérios clínicos de seleção adequados, resultaria no que hoje constitui a análise genética multifatorial ou integrada. Objetivo: O presente trabalho teve como objetivo implementar a análise genético-molecular integrada ao processo de investigação de pacientes com diagnóstico clínico de MODY (Maturity-Onset Diabetes of the Young). Materiais e métodos: A prevalência dos dois subtipos mais frequentes de MODY (MODY-GCK e MODY-HNF1A) foi investigada em uma grande coorte de famílias brasileiras. Todas as variantes identificadas como relacionadas ao fenótipo foram criteriosamente classificadas quanto a suas reais evidências de patogenicidade por meio da implementação das mais recentes diretrizes de obtenção e interpretação de achados genéticos. Resultados: Cento e nove probandos foram investigados, 45% (49/109) com suspeita clínica de MODYGCK e 55% (60/109) de MODY-HNF1A, além de 94 familiares, o que resultou na identificação de 25 variantes únicas candidatas no gene GCK em 30 probandos (61% - 30/49), além de 7 em 10 indivíduos com suspeita de MODYHNF1A (17% - 10/60). Dos 87 familiares sob risco rastreados, 43 eram portadores da mesma variante da família (37 - GCK e 6 - HNF1A). Um provável efeito fundador foi identificado com relação a uma deleção/inserção do tipo frameshift, presente em três probandos com MODY-GCK oriundos da mesma região do país. A implementação dos critérios da ACMG (The American College of Medical Genetics and Genomics) de avaliação de evidências de patogenicidade resultou na classificação de uma grande parcela das variantes como patogênica (36% - GCK / 86% - HNF1A) e provavelmente patogênica (44% - GCK / 14% - HNF1A), restando 16% com uma associação ainda incerta com o fenótipo investigado. Quatorze novas variantes foram identificadas (12 - GCK / 2 - HNF1A), ampliando, assim, o espectro de alterações associadas a MODY. Conclusões: Esta abordagem investigativa nos permitiu não apenas esclarecer a etiologia genética de inúmeros casos com diagnóstico clínico de MODY, como também determinar a classificação de patogenicidade das variantes de uma maneira mais detalhada, reforçando, principalmente, a provável relação com o fenótipo dentre aquelas ainda não descritas / Introduction: The full sequencing of the human genome was completed in 2003, becoming responsible for a revolution in medical practice, generally referred to as the era of genomics and personalized medicine. The increase in demand for genetic testing and the introduction of new methods of large-scale sequencing has raised an inevitable growth in the number of mapped rare variants. This fact led to the expansion of areas of knowledge required for a proper evaluation of the real clinical significance of these findings, as to a more solid indication of genetic research. Because of this, it is necessary to optimize the processes, from the selection of cases under suspicion until the collection, storage and analysis of the clinical laboratory and molecular data obtained, aiming a better accuracy in diagnosis, treatment and genetic counseling. A proper collection and interpretation of the molecular genetic findings, coupled with clinical criteria for appropriate selection would result in what today is the multifactorial or integrated genetic analysis. Objective: This current study aimed to implement the integrated molecular genetic analysis to the investigation process of patients with clinical diagnosis of MODY (Maturity Onset Diabetes of the Young). Materials and methods: The prevalence of the two most common MODY subtypes (MODYGCK and MODY-HNF1A) was investigated in a large cohort of Brazilian families. All variants identified as related to the phenotype were carefully classified to their actual evidence of pathogenicity by implementing the latest guidelines for obtainment and interpretation of genetic findings. Results: 109 probands were investigated, 45% (49/109) with clinical suspicion of MODY-GCK and 55% (60/109) of MODY-HNF1A, plus 94 family members under risk, which resulted in the identification of 25 unique variants candidates in the gene GCK in 30 probands (61% - 30/49), and also 7 in 10 individuals with suspected MODYxvi HNF1A (17% - 10/60). Of the 87 family members under risk, 43 were carriers of the same variant of the family (37 - GCK and 6 - HNF1A). A probable founding effect was identified, related to a frameshift deletion/insertion, present in three probands with MODY-GCK from the same region of the country. The implementation of the ACMG guidelines (The American College of Medical Genetics and Genomics) of evidence of pathogenicity assessment resulted in the classification of a large portion of the variants as pathogenic (36% - GCK / 86% - HNF1A) and likely pathogenic (44% - GCK / 14% - HNF1A), leaving 16% with a still uncertain association with the investigated phenotype. Fourteen new variants were identified (12 - GCK / 2 - HNF1A), broadening the spectrum of modifications associated to MODY. Conclusions: This investigative approach allowed us to not only clarify the genetic etiology of numerous cases with clinical diagnosis of MODY, as well as determine the pathogenicity classification of variants in a more detailed way, reinforcing the likely relationship with the phenotype among those not yet described
73

Large-Scale Genotyping for Analysis of the Type I Interferon System in Autoimmune Diseases

Sigurdsson, Snaevar January 2006 (has links)
<p>Single nucleotide polymorphisms (SNPs) are the most common form of genetic variation. We developed a novel multiplexed method for SNP genotyping based on four-color fluorophore tag-microarray minisequencing. This method allows simultaneous genotyping of 80 samples and up to 200 SNPs in any allele combination. In study I we set up the method for a panel of SNPs from genes in the type I interferon system, and applied it in study III. In study II we used the technique to genotype SNPs from the coding region of the mitochondrial genome. A panel of 150 SNPs was genotyped in 265 individuals representing nine different populations. We demonstrated that the multiplexed SNP genotyping method for mitochondrial DNA increases the power of forensic identification in combination with sequencing of the hypervariable region of mitochondrial DNA. </p><p>In study III we performed a genetic association study of SNPs in genes related to the type I Interferon system in Systemic Lupus Erythematosus (SLE). SLE is a chronic autoimmune inflammatory disease with a complex etiology. The SNPs were genotyped in DNA samples from Swedish, Finnish, and Icelandic patients with SLE, unaffected family members, and unrelated controls. The analysis identified SNPs in two genes, the tyrosine kinase 2 (TYK2) and interferon regulatory factor 5 (IRF5) genes that are highly associated with SLE with p-values <10<sup>-7</sup> for joint linkage and association. </p><p>Study IV describes the analysis of the TYK2 and IRF5 SNPs in a large Rheumatoid Arthritis (RA) sample cohort. We found that SNPs in the IRF5 gene were significantly associated with RA with a p-value = 0.00008. In contrast, we did not detect an association with SNPs in the TYK2 gene. These findings demonstrate that SLE and RA may have a common genetic background in the case of IRF5, while the TYK2 variants appear to be unique for SLE. </p>
74

Tissue Factor and CD40 Ligand : Markers for the Interplay of Coagulation and Inflammation in the Acute Coronary Syndrome

Mälarstig, Anders January 2006 (has links)
<p>BACKGROUND: Tissue factor (TF) is a 47 kDa transmembrane glycoprotein known as the main initiator of blood coagulation. CD40 ligand is another membrane molecule, which ligates to cell types associated with atherosclerotic plaques thereby mediating intraplaque inflammation and weakening of the fibrous cap. Acute coronary syndrome (ACS) is a multi-factorial disease in which TF and CD40 ligand have prominent roles. Single nucleotide poly-morphisms (SNPs) in the TF and CD40 ligand genes may influence the development, pro-gression and outcome in ACS. AIM: The aim of this thesis was to investigate the genetic and molecular control of TF expression in healthy individuals and in patients with ACS. More-over, the aim was to investigate whether SNPs in the TF and CD40L genes respectively were associated with risk and outcome in ACS and / or with plasma concentrations of these pro-teins. RESULTS: A real-time PCR method that allowed sensitive and dynamic quantification of TF mRNA was established and used for the identification of a high and low response phe-nomenon of TF mRNA. The TF high and low response correlated with the expression of toll-like receptor 4 (TLR-4) thus linking TF to innate immunity in a novel fashion. Investigation of several SNPs in the TF and CD40L genes led to the identification of the 5466 A>G in the TF gene and the -3459 A>G SNP in the CD40L gene. The 5466 G allele was associated with cardiovascular death in patients with ACS and increased TF procoagulant activity in human monocytes, which explained the clinical association. The -3459 G allele regulated the produc-tion of soluble CD40L but was not related with patient outcome. Soluble CD40L levels above median were associated with the risk of MI in patients with ACS. A prolonged treatment with dalteparin was more efficient in patients presenting with high levels of sCD40L, which further supports sCD40L as a marker of a prothrombotic state. CONCLUSIONS: The results of this thesis adds to our current knowledge of factors influencing TF expression and activity by demonstrating the effects of TF gene variants, cell signalling molecules, CD40 ligand protein and gene variation. All of these effects have the potential to modify the risk of development, progression and outcome in the acute coronary syndrome and exemplify the interplay between coagulation and inflammation, in which both TF and CD40 ligand are active.</p>
75

Autoimmune Regulator Deficient Mice, an Animal Model of Autoimmune Polyendocrine Syndrome Type I

Hässler, Signe January 2006 (has links)
<p>Autoimmune diseases develop when the immune system fails to distinguish self from non-self or when the immune system is hypersensitive to endogenous or exogenous danger signals, or when a tissue erroneously sends a danger signal to the immune system. The education of the immune system to distinguish self from non-self is mainly carried out in the thymus and gives rise to central tolerance, whereas the ability to sense a danger or a healthy tissue constitutes peripheral tolerance. In these studies we have investigated the peripheral tolerance mechanisms controlled by the autoimmune regulator <i>(Aire)</i> gene in Aire deficient mice, an animal model of the monogenic disease autoimmune polyendocrine syndrome type I (APS I).</p><p>Aire-/- mice displayed increased numbers of myeloid-derived antigen-presenting cells (APCs) in the spleen, lymph nodes and peritoneum as well as more blood monocytes and metallophilic macrophages in the spleen. Monocytes were also increased in the blood of APS I patients. Monocyte precursors displayed an accelerated development in the bone marrow of Aire-/- mice, and Aire-/- APCs had an altered phenotype that caused an increased immune response in several different contexts. Aire-/- splenic and lymph node dendritic cells had an increased ability to activate naive T cells, partly as a result of an upregulated expression of the costimulatory molecule VCAM-1. In Aire-/- mice increased activity of the metallophilic macrophages in the splenic marginal zone seems to be responsible both for the activated phenotype of marginal zone B cells and for the frequent development of marginal zone lymphoma with aging. In a TCR transgenic model Aire deficiency caused an increased superantigen-mediated TCR revision in the spleen, perhaps as a result of the altered phenotype of APCs in the spleen. Finally, Aire was shown to influence autoimmune disease development by a macrophage-dependent mechanism in diabetes induced with multiple low dose streptozotocin injections.</p><p>These results indicate that Aire has an important function in peripheral tolerance by controlling the phenotype of myeloid-derived APCs and thereby regulating the activation of T and B lymphocytes.</p> / <p>Autoimmune diseases develop when the immune system fails to distinguish self from non-self or when the immune system is hypersensitive to endogenous or exogenous danger signals, or when a tissue erroneously sends a danger signal to the immune system. The education of the immune system to distinguish self from non-self is mainly carried out in the thymus and gives rise to central tolerance, whereas the ability to sense a danger or a healthy tissue constitutes peripheral tolerance. In these studies we have investigated the peripheral tolerance mechanisms controlled by the autoimmune regulator <i>(Aire)</i> gene in Aire deficient mice, an animal model of the monogenic disease autoimmune polyendocrine syndrome type I (APS I).</p><p>Aire-/- mice displayed increased numbers of myeloid-derived antigen-presenting cells (APCs) in the spleen, lymph nodes and peritoneum as well as more blood monocytes and metallophilic macrophages in the spleen. Monocytes were also increased in the blood of APS I patients. Monocyte precursors displayed an accelerated development in the bone marrow of Aire-/- mice, and Aire-/- APCs had an altered phenotype that caused an increased immune response in several different contexts. Aire-/- splenic and lymph node dendritic cells had an increased ability to activate naive T cells, partly as a result of an upregulated expression of the costimulatory molecule VCAM-1. In Aire-/- mice increased activity of the metallophilic macrophages in the splenic marginal zone seems to be responsible both for the activated phenotype of marginal zone B cells and for the frequent development of marginal zone lymphoma with aging. In a TCR transgenic model Aire deficiency caused an increased superantigen-mediated TCR revision in the spleen, perhaps as a result of the altered phenotype of APCs in the spleen. Finally, Aire was shown to influence autoimmune disease development by a macrophage-dependent mechanism in diabetes induced with multiple low dose streptozotocin injections.</p><p>These results indicate that Aire has an important function in peripheral tolerance by controlling the phenotype of myeloid-derived APCs and thereby regulating the activation of T and B lymphocytes.</p>
76

Immunoglobulin VH gen analys in human B-cell

Heidari, Ramesh January 2006 (has links)
<p>Malt lymphoma is a malignant disease that can arise in a variety of extra nodal sites. Previous studies indicate that tumour arise from more mature B-cells.</p><p>Our purpose was to examine the presence of clonality and somatic hypermutation of immunoglobulin (IgVн) of MALT lymphomas.</p><p>Paraffin-embedded tumour samples from13 MALT lymphoma were subjected to rearrangement analysis, by using PCR, heteroduplex gels and sequence analysis.</p><p>Successful amplification was seen in 10/13 cases and sequences of IgVн genes were obtained in 6/13, all of them were mutated. The percentage of mutation compared to germline sequences was 1,1% to 8,6% monoclonal rearrangemang. It was demonstrated that 5 of 7 clones were derived from the Vн3 family, 2 from Vн1 and 1 from the Vн 4 family.</p>
77

Modulation of Angiogenesis by Laminins and Heparan Sulfate

Jakobsson, Lars January 2007 (has links)
<p>Blood vessels transport blood with essential nutrients and oxygen to the cells in our body. In a healthy adult, formation of new vessels (angiogenesis) occurs only in case of tissue repair and growth. Physiological angiogenesis requires precise regulation of multiple signaling components, a process which is deregulated in a number of pathological conditions, such as cancer. This thesis is focused on the role of laminins, heparan sulfate proteoglycans (HSPGs) and vascular endothelial growth factor (VEGF)-A in regulation of vascular development and angiogenesis. As a model, we have used embryonic stem cells that differentiate to form blood vessels in a manner faithfully recapitulating the <i>in vivo</i> processes. </p><p>We show that the basement membrane (BM) protein laminin-111 promotes maturation of endothelial cells in the presence of fibroblast growth factor-2, a known endothelial cell mitogen. However, embryonic stem cells are able to differentiate into endothelial cells also in the absence of laminin deposition in the vascular BM. Sprouting angiogenesis, induced by VEGF-A, is also not strictly dependent on laminin deposition. On the other hand, in the absence of laminins, vessels are enlarged. These data suggest an important role for laminins in regulation of the vessel diameter.</p><p>We also show that HSPGs serve as coreceptors for VEGF-A to regulate vascular development. The mode of presentation of HSPGs, <i>in</i> <i>cis</i> (on the endothelial cell) or <i>in</i> <i>trans</i> (on an adjacent cell such as pericytes), is critical in regulation of VEGF receptor-2 activation and stimulation of vascular development. Binding of VEGF-A to HSPGs <i>in</i> <i>trans</i> leads to accumulation of activated VEGFR-2 in endothelial cells and to prolonged signaling. This demonstrates a potential role for HSPGs in regulation of receptor trafficking and signaling kinetics, with possible implications also for other HS-binding ligand/receptor systems.</p>
78

Radiolabelled Oligonucleotides for Evaluation of in vivo Hybridisation Utilising PET Methodology

Lendvai, Gábor January 2007 (has links)
<p>Antisense oligonucleotides (ODN) may interfere in gene expression on the basis of hybridising to its complementary messenger RNA (mRNA) sequence in the cell thereby preventing the synthesis of the peptide. Therefore, these ODNs may be potential drugs to treat human diseases by “knocking down” the expression of responsible genes or correcting the maturation process of mRNA in the field called antisense therapy. Moreover, antisense ODNs upon labelling are also potential imaging agents to monitor gene expression <i>in vivo</i>, i.e. to accomplish <i>in vivo</i> hybridisation. This would provide a non-invasive tool compared to present methods, which require tissue samples. </p><p>This goal may be reached using positron emission tomography (PET) methodology. PET is a most advanced <i>in vivo</i> imaging technology, which would allow exploring the fate of radionuclide-labelled antisense ODNs in the body; thereby providing information about biodistribution and quantitative accumulation in tissues to assess pharmacokinetic properties of ODNs. This kind of evaluation is important as part of the characterisation of antisense therapeutics but also as part of the development of antisense imaging agents.</p><p>The present study aimed to investigate <sup>76</sup>Br- and <sup>68</sup>Ga-labelled ODNs of five different modifications: phosphodiester, phosphorothioate, 2'-<i>O</i>-methyl phosphodiester, locked nucleic acid (LNA), and peptide nucleic acid. The study included exploration of the hybridisation abilities of these ODNs after labelling; furthermore, the biodistribution, metabolite analysis and uptake of the ODNs in rats regarding non-hybridisation and hybridisation specific uptake was conducted. Among the ODNs studied, LNA-DNA mixmer (LNA and DNA nucleotides in alternation along the sequence) displayed the most promising characteristics considering a higher retention in tissues, stability and longer plasma residence. However, biodistribution data demonstrated a non-hybridisation specific distribution in rat tissues with kidney, liver, spleen and bone marrow being the organs of high uptake. Scavenger receptors or other saturable processes unrelated to hybridisation may play a role in tissue uptake and in clearance of antisense ODNs through these organs. These processes may be sequence dependent suggesting that proof of <i>in vivo</i> hybridisation through imaging needs much more elaborate evaluations than just comparison of sense and antisense sequences and proving dose-dependency.</p>
79

On CD4<sup>+</sup> T Lymphocytes in Solid Tumours

Marits, Per January 2007 (has links)
<p>This thesis deals with recognition and elimination of tumours by T lymphocytes and their use in adoptive immunotherapy.</p><p>The first tumour-draining lymph node; the sentinel node, is identified by peritumoural injection of a tracer. This is the hypothesised location for the activation of tumour-reactive lymphocytes. Accordingly, proliferation and IFN-γ production in response to autologous tumour extract was detected in sentinel nodes from patients with colon and urinary bladder cancer. Reactivity in metastatic nodes was generally lower or absent, but the non-responsiveness could be subdued in long-term cultures by addition of tumour antigen and IL-2. A novel padlock-probe based method was developed for measuring the T cell receptor Vβ repertoire. Common Vβ gene expansions were detected in tumour-infiltrating lymphocytes and sentinel nodes. Thus, tumour antigens are recognised in sentinel nodes by Th1 lymphocytes, resulting in a clonally expanded cell population that can be further propagated <i>ex vivo</i>.</p><p>Regulatory T cells (Tregs) may contribute to tumour-induced immunosuppression. Immunohistochemical stainings against the pan-T cell marker CD3 and Treg marker FOXP3 was performed on tumour tissue from 20 historical urinary bladder cancer patients. The ratio of FOXP3<sup>+</sup> to CD3<sup>+</sup> cells was lower in patients alive 7 years post-cystectomy, suggesting that Tregs in bladder cancer have prognostic implications.</p><p>Lymphocytes were isolated from sentinel nodes from sixteen patients with advanced or high-risk colon cancer. <i>In vitro</i> expansion with addition of autologous tumour extract and IL-2 mainly promoted the outgrowth of CD4<sup>+</sup> Th1 lymphocytes, which were safely re-transfused to the patients. Four patients responded with complete tumour regression. Survival time in the Dukes’ D patients was significantly increased compared with conventionally treated controls (2.6 versus 0.8 years; p=0.048).</p><p>In conclusion, human solid tumours are recognised in sentinel nodes and <i>in vitro</i> expanded sentinel node-acquired CD4<sup>+</sup> T lymphocytes seem useful in the treatment of patients with disseminated cancer.</p>
80

Large-Scale Genotyping for Analysis of the Type I Interferon System in Autoimmune Diseases

Sigurdsson, Snaevar January 2006 (has links)
Single nucleotide polymorphisms (SNPs) are the most common form of genetic variation. We developed a novel multiplexed method for SNP genotyping based on four-color fluorophore tag-microarray minisequencing. This method allows simultaneous genotyping of 80 samples and up to 200 SNPs in any allele combination. In study I we set up the method for a panel of SNPs from genes in the type I interferon system, and applied it in study III. In study II we used the technique to genotype SNPs from the coding region of the mitochondrial genome. A panel of 150 SNPs was genotyped in 265 individuals representing nine different populations. We demonstrated that the multiplexed SNP genotyping method for mitochondrial DNA increases the power of forensic identification in combination with sequencing of the hypervariable region of mitochondrial DNA. In study III we performed a genetic association study of SNPs in genes related to the type I Interferon system in Systemic Lupus Erythematosus (SLE). SLE is a chronic autoimmune inflammatory disease with a complex etiology. The SNPs were genotyped in DNA samples from Swedish, Finnish, and Icelandic patients with SLE, unaffected family members, and unrelated controls. The analysis identified SNPs in two genes, the tyrosine kinase 2 (TYK2) and interferon regulatory factor 5 (IRF5) genes that are highly associated with SLE with p-values &lt;10-7 for joint linkage and association. Study IV describes the analysis of the TYK2 and IRF5 SNPs in a large Rheumatoid Arthritis (RA) sample cohort. We found that SNPs in the IRF5 gene were significantly associated with RA with a p-value = 0.00008. In contrast, we did not detect an association with SNPs in the TYK2 gene. These findings demonstrate that SLE and RA may have a common genetic background in the case of IRF5, while the TYK2 variants appear to be unique for SLE.

Page generated in 0.0917 seconds