Spelling suggestions: "subject:"8molecules."" "subject:"amolecules.""
781 |
Adsorption and Diffusion Phenomena in Crystal Size Engineered ZIF‑8 MOFTanaka, Shunsuke, Fujita, Kosuke, Miyake, Yoshikazu, Miyamoto, Manabu, Hasegawa, Yasuhisa, Makino, Takashi, Van der Perre, Stijn, Cousin Saint Remi, Julien, Van Assche, Tom, Baron, Gino V., Denayer, Joeri F. M. 18 September 2018 (has links)
ZIF-8 is a flexible zeolitic imidazole-based metal−organic framework whose
narrow pore apertures swing open by reorientation of imidazolate linkers and expand when
probed with guest molecules. This work reports on the crystal size dependency of both
structural transitions induced by N2 and Ar adsorption and dynamic adsorption behavior of
n-butanol using well-engineered ZIF-8 crystals with identical surface area and micropore
volume. It is found that the crystal downsizing of ZIF-8 regulates the structural flexibility in
equilibrium adsorption and desorption of N2 and Ar. Adsorption kinetics of n-butanol in
ZIF-8 are strongly affected by the crystal size, however, not according to a classical
intracrystalline diffusion mechanism. Our results suggest that structural transitions and
transport properties are dominated by crystal surface effects. Crystal downsizing increases
the importance of such surface barriers.
|
782 |
Reactivity in the Single Molecule JunctionStarr, Rachel January 2021 (has links)
In the last two decades, significant strides have been made towards utilizing the scanning tunneling microscope (STM) as a reaction chemistry tool, in addition to its primary use as an imaging instrument. Built off the STM, the STM-break junction (STM-BJ) technique was developed specifically for the reliable and reproducible measurement of properties of a single molecule suspended between two electrodes. These advances are crucial to the fields of molecular electronics and single-molecule reactivity, the latter also relating back to traditional bulk chemistry. By intelligently designing experiments and systems to probe with the STM and STM-BJ, we can begin to understand chemical processes on a deeper level than ever before.
Chapter 1 provides an overview of the recent work using the STM and STM-BJ to effect chemical transformations which involve the making and breaking of bonds. We contextualize this progress in terms of single-molecule manipulation and synthetic chemistry, to understand the implications and outlook of this field of study. Seminal surface-based reactions are discussed, in addition to reactions that occur in both solution and within the single molecule junction. Differences between STM and STM-BJ capabilities and limitations are detailed, and the challenges of translating these fundamental experiments into functional reactions are addressed.
Chapter 2 describes using the STM-BJ to study the binding of aryl iodides between gold electrodes. Important details regarding these binding modes, which were previously incompletely understood, are revealed via concrete experimental evidence. Our data suggests that this system, which is synthetically accessible, holds promise for forming the sought-after and highly conducting covalent gold-carbon bonds in situ and can be modulated with applied bias.
Chapter 3 builds upon the knowledge gained in Chapter 2, and focuses on the reactivity of aryl iodides in the junction. We demonstrate a new in situ reaction of an Ullmann coupling, or dimerization, of various biphenyl iodides. By strategically designing the molecules studied, we are also able to gain mechanistic insight into this process, which in the bulk still remains debated, as well as demonstrate a cross-coupling reaction. This project is ongoing as of the submission of this dissertation, so other findings and continuing experiments are included.
Chapter 4 transitions towards a different type of binder to gold, the cyclopropenylidene-based carbene. These amino-functionalized carbenes prove to be stronger linkers than N-heterocyclic carbenes, which are known binders to gold. Using a variety of surface analysis, imaging, and computational techniques, we explore the binding geometries and energies of cyclopropenylidenes, expanding the scope of carbene surface modifiers.
Chapter 5 summarizes this body of PhD research, suggests directions for future work, and concludes the dissertation. These works explore the binding and reactivity of molecules on gold surfaces and within the single molecule junction, improving upon the understanding of this newly burgeoning field. This thesis seeks to encourage future work on these and related systems, to continue refining our comprehension of both junction and bulk reaction chemistry processes.
|
783 |
Změny v expresi membránových molekul CD200R, CD95, CD95L a solubilního CD200R regulujících zánětlivou odpověď u pacientů podstupujících kardiochirurgický zákrok / Changes in Expression of Membrane Molecules CD200R, CD95, CD95L, and Soluble CD200R Regulating inflammatory Responses in Patients Undergoing Cardiac SurgeryHolmannová, Drahomíra January 2017 (has links)
Cardiac surgery is known to initiate a complex physiological response with the immune system activation (SIRS), neurohormonal response, metabolic changes, coagulopathies etc. SIRS is triggered by tissue injury, myocardial ischemia, reperfusion, use of anaesthesia, cardioplegia, extracorporeal circuit etc. Excessive immune system activation is associated with progression of SIRS, life-threatening multi-organ dysfunction (MOD), and increased morbidity/mortality in the postoperative period. The immune system response is regulated and terminated by both cellular and humoral regulatory and inhibitory mechanisms including changes in expression of in our study monitored molecules: CD200/CD200R, sCD200R and CD95/CD95L. Methods: The study included the measurement the expression of CD95, CD95L, CD200R, and sCD200R molecules in granulocyte and monocyte populations in blood samples of 30 patients who underwent heart surgery using CPB. Samples collected before surgery, after surgery, and in the postoperative period (1st , 3rd , 7th day) were analysed by flow cytometry and sCD200R by ELISA. Results: We discovered a significant increase in the percentage of granulocytes expressing inhibitory molecule CD200R (from 5% to 17.8%) instantly after surgery. It might be presumed that these cells are less susceptible to...
|
784 |
Endothelial HSPA12B Exerts Protection Against Sepsis-Induced Severe Cardiomyopathy via Suppression of Adhesion Molecule Expression by miR-126Zhang, Xia, Wang, Xiaohui, Fan, Min, Tu, Fei, Yang, Kun, Ha, Tuanzhu, Liu, Li, Kalbfleisch, John, Williams, David, Li, Chuanfu 29 April 2020 (has links)
Heat shock protein A12B (HSPA12B) is predominately expressed in endothelial cells (ECs) and has been reported to protect against cardiac dysfunction from endotoxemia or myocardial infarction. This study investigated the mechanisms by which endothelial HSPA12B protects polymicrobial sepsis–induced cardiomyopathy. Wild-type (WT) and endothelial HSPA12B knockout (HSPA12B–/–) mice were subjected to polymicrobial sepsis induced by cecal ligation and puncture (CLP). Cecal ligation and puncture sepsis accelerated mortality and caused severe cardiac dysfunction in HSPA12B–/– mice compared with WT septic mice. The levels of adhesion molecules and the infiltrated immune cells in the myocardium of HSPA12B–/– septic mice were markedly greater than in WT septic mice. The levels of microRNA-126 (miR-126), which targets adhesion molecules, in serum exosomes from HSPA12B–/– septic mice were significantly lower than in WT septic mice. Transfection of ECs with adenovirus expressing HSPA12B significantly increased miR-126 levels. Increased miR-126 levels in ECs prevented LPS-stimulated expression of adhesion molecules. In vivo delivery of miR-126 carried by exosomes into the myocardium of HSPA12B–/– mice significantly attenuated CLP sepsis increased levels of adhesion molecules, and improved CLP sepsis–induced cardiac dysfunction. The data suggest that HSPA12B protects against sepsis-induced severe cardiomyopathy via regulating miR-126 expression which targets adhesion molecules, thus decreasing the accumulation of immune cells in the myocardium.
|
785 |
NOVEL THERAPEUTIC COMPOUNDS MODULATE THE INFLAMMATORY RESPONSE OF STIMULATED EQUINE SYNOVIOCYTESKrista M Huff (12476769) 28 April 2022 (has links)
<p> </p>
<p>Osteoarthritis (OA) is prevalent in equine and can be career-ending for performance horses due to lameness limitations and decreased quality of life. OA is a progressive, multifactorial disease that compromises the synovial joints' normal function, resulting in subchondral bone and articular cartilage deterioration over time. OA is a complex disease that impacts the entire joint, wherein activation of the innate immune system has an essential role in the disease progression and the development of pain. The synovial membrane, or the synovium, is a crucial contributor to the inflammation of diseased joints, regardless of the intra-articular tissue type initially affected. Synoviocytes are a predominant cell type of the synovium and contribute to inflammation by releasing key mediators and degradative enzymes, such as interleukin (IL)-6, IL-1β, a disintegrin, and metalloproteinase (ADAM) domains, and matrix metalloproteinases (MMPs). The production of pro-inflammatory molecules sequentially influences the expression of degradative enzymes and cartilage destruction. Therefore, the pathophysiological processes within synovial joints afflicted by OA can be further understood by studying the characteristics of synoviocytes.</p>
<p>We aimed to investigate the inflammatory component of OA in an <em>in vitro</em> model using a primary cell line of equine fibroblast-like synoviocytes (eqFLS) stimulated with tumor necrosis factor-alpha (TNF-α) to represent an initial inflammatory stimulus. Our studies have shown that stimulating eqFLS with TNF-α for 24 hours significantly increased the gene expression of pro-inflammatory biomarkers. Among several pro-inflammatory candidate genes assayed, only pro-inflammatory cytokine IL-6 gene expression could be detected reproducibly following stimulation with the TNF-α gene in eqFLS. We characterized the pro-inflammatory response of eqFLS and utilized this system to examine the impact of novel therapeutic compounds designed <em>in-silico</em> with the goal of reducing the inflammatory response of eqFLS. A piperazine-based compound (C3) and its derivative (02-09) were primarily designed to mimic the interactions of the growth factor pigment epithelium-derived factor (PEDF) with its receptor, the non-integrin laminin receptor 1 (LAMR1). Based on previous <em>in vitro</em> studies in the laboratory, C3 and 02-09 had been proposed to have a strong potential for inhibiting inflammation while reducing angiogenesis and chondrocyte hypertrophy. The efficacy of these two novel compounds on eqFLS was examined in the present work by assessing the gene expression levels of inflammatory biomarkers, including IL-6, IL-1β, IL-8, ADAMs, and MMPs relative to a control housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in various study designs. An <em>in-vitro</em> screen with the IL-1β promoter driving a reporter green fluorescent protein (GFP) was also designed to detect and track the inflammatory response of eqFLS by imaging following stimulation with or without (+/-) TNF-α relative to controls. This screen will be utilized in future studies to potentially identify more effective compounds in the LAMR1-interacting series. The current findings suggest that the novel compounds, especially 02-09, might exhibit an anti-inflammatory effect on eqFLS; therefore, it is a potential therapeutic agent in modulating inflammation during OA development. </p>
<p><br></p>
|
786 |
Reciprocal Regulation of IL-23 and IL-12 Following Co-Activation of Dectin-1 and TLR Signaling PathwaysDennehy, Kevin M., Willment, Janet A., Williams, David L., Brown, Gordon D. 01 May 2009 (has links)
Recognition ofmicrobial products by germ-line-encoded PRR initiates immune responses, but how PRR mediate specific host responses to infectious agents is poorly understood. We and others have proposed that specificity is achieved by collaborative responsesmediated between different PRR. One such example comprises the fungal β-glucan receptor Dectin-1, which collaborates with TLR to induce TNF production. We show here that collaborative responses mediated by Dectin-1 and TLR2 are more extensive than first appreciated, and result in enhanced IL-23, IL-6 and IL-10 production in DC, while down-regulating IL-12 relative to the levels produced by TLR ligation alone. Such down-regulation occurred with multiple MyD88-coupled TLR, was dependent on signaling through Dectin-1 and also occurred in macrophages. These findings explain how fungi can induce IL-23 and IL-6, while suppressing IL-12, a combination which has previously been shown to contribute to the development of Th17 responses found during fungal infections. Furthermore, these data reveal how the collaboration of different PRR can tailor specific responses to infectious agents.
|
787 |
Vav1 and PI3k Are Required for Phagocytosis of β-Glucan and Subsequent Superoxide Generation by MicrogliaShah, Vaibhav B., Ozment-Skelton, Tammy R., Williams, David L., Keshvara, Lakhu 01 May 2009 (has links)
Microglia are the resident innate immune cells that are critical for innate and adaptive immune responses within the CNS. They recognize and are activated by pathogen-associated molecular patterns (PAMPs) present on the surface of pathogens. β-glucans, the major PAMP present within fungal cell walls, are recognized by Dectin-1, which mediates numerous intracellular events invoked by β-glucans in various immune cells. Previously, we showed that Dectin-1 mediates phagocytosis of β-glucan and subsequent superoxide production in microglia. Here, we report that the guanine nucleotide exchange factor Vav1 as well as phosphoinositide-3 kinase (PI3K) are downstream mediators of what is now recognized as the Dectin-1 signaling pathway. Both Vav1 and PI3K are activated upon stimulation of microglia with β-glucans, and the two proteins are required for phagocytosis of the glucan particles and for subsequent superoxide production. We also show that Vav1 functions upstream of PI3K and is required for activation of PI3K. Together, our results provide an important insight into the mechanistic aspects of microglial activation in response to β-glucans.
|
788 |
Β-Glucan Attenuates TLR2- and TLR4-Mediated Cytokine Production by MicrogliaShah, Vaibhav B., Williams, David L., Keshvara, Lakhu 24 July 2009 (has links)
Microglia, the resident immune cells of the brain, are activated in response to any kind of CNS injury, and their activation is critical for maintaining homeostasis within the CNS. However, during inflammatory conditions, sustained microglial activation results in damage to surrounding neuronal cells. β-Glucans are widely recognized immunomodulators, but the molecular mechanisms underlying their immunomodulatory actions have not been fully explored. We previously reported that β-glucans activate microglia through Dectin-1 without inducing significant amount of cytokines and chemokines. Here, we show that particulate β-glucans attenuate cytokine production in response to TLR stimulation; this inhibitory activity of β-glucan is mediated by Dectin-1 and does not require particle internalization. At the molecular level, β-glucan suppressed TLR-mediated NF-κB activation, which may be responsible for the diminished capacity of microglia to produce cytokines in response to TLR stimulation. Overall, these results suggest that β-glucans may be used to prevent or treat excessive microglial activation during chronic inflammatory conditions.
|
789 |
Gene-Environment Interplay in Schizopsychotic DisordersPalomo, Tomas, Archer, Trevor, Kostrzewa, Richard M., Beninger, Richard J. 01 December 2004 (has links)
Genetic studies have sought to identify subtypes or endophenotypes of schizophrenia in an effort to improve the reliability of findings. A number of chromosomal regions or genes have now been shown to have had replicated linkage to schizophrenia susceptibility. Molecules involved in neurodevelopment or neurotransmitter function are coded by many of the genes that have been implicated in schizophrenia. Studies of neurotransmitter function have identified, among others, a possible role for GABA, glutamate and dopamine in animal models of schizophrenia. GABA neurons that co-express the calcium binding protein parvalbumin have been implicated as have glutamatergic metabotropic receptors and dopamine D3 receptors. Stress influences glutamate and dopamine providing another environmental factor that may interact with the influence of genes on neurotransmitter function. Neurotransmitter interactions include influences on signaling molecules and these too have been implicated in forms of learning thought to be affected in schizophrenia. Results continue to unravel the interplay of genes and environment in the etiology of schizophrenia and other psychotic disorders.
|
790 |
Exotic Properties of Multi-Dimensional Molecular Systems on Metal Surfaces: Single Molecule Level Investigations and ManipulationsWang, Shaoze 24 May 2022 (has links)
No description available.
|
Page generated in 0.036 seconds