• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 63
  • 24
  • 3
  • Tagged with
  • 189
  • 88
  • 71
  • 68
  • 47
  • 34
  • 33
  • 33
  • 33
  • 28
  • 19
  • 17
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Simulationsstudien zur ortsspezifischen Biokonjugation maßgeschneiderter Polymere / Simulation Studies on the Site-Specific Bioconjugation of Polymers

Kehrein, Josef January 2022 (has links) (PDF)
Polymer-Biokonjugationen, vornehmlich mit dem Goldstandard PEG, führen zu einer verbesserten Pharmakokinetik, beeinflussen aber auch die konformative Stabilität von Proteinen. Bisherige Mutationsstudien, in denen überwiegend (Asn)PEG4 -Konjugate der Beta-faltblattstrukturreichen, humanen Pin 1 WW-Domäne untersucht wurden, postulieren auf einer Proteindesolvatation beruhende Stabilisierungsmechanismen: eine Stärkung intramolekularer Salzbrücken und NH-pi-Bindungen, sowie entropisch günstige Wasserverdrängungen um apolare Aminosäuren und Hydroxylgruppen. Ziel dieser Arbeit ist es, die Protein-Polymer-Dynamik auf molekularer Ebene zu charakterisieren, um damit rationale Ansätze zum Design neuer Biokonjugate voranzutreiben und mögliche PEG-Alternativen zu etablieren. Hierzu wurde eine Vielzahl an Deskriptoren mittels Molekulardynamik-Simulationen der WW-Konjugate gewonnen und mit publizierten Stabilitätsdaten in multivariaten Regressions- und logistischen Klassifikationsmodellen korreliert. Die gewonnenen QSPR-Modelle decken im Vergleich zu einer bereits publizierten, kristallstrukturbasierten Richtlinie einen größeren und strukturell vielfältigeren Datensatz an Konjugaten ab und zeigen gleichzeitig, auch für ein Konjugat der Src SH3-Domäne, eine deutlich verbesserte Leistung. Die Modelldeskriptoren beschreiben sowohl eine Modulation der Solvatation als auch Protein-Polymer-Interaktionen. Metadynamik-Simulationen zeigten zudem die Polymerdynamik während einer partiellen Proteinentfaltung auf. Mithilfe weiterer Simulationen von Konjugaten des alpha-helikalen Her2-Affibodys wurde die Dynamik von PEG und verschiedener Alternativen (LPG, PEtOx, PMeOx) systematisch studiert. PEG interagierte mit positiv geladenen Lysinen und Argininen in der Nähe hydrophober Aminosäuren. LPG zeigte zusätzliche Wechselwirkungen der Hydroxylgruppen mit Aspartaten und Glutamaten. POx-Polymere interagierten mit Phenylalaninen, Tyrosinen und über Carbonylgruppen mit HB-Donatoren. Größere Konjugate (10 - 50 kDa PEG/LPG/PEtOx) des antiviralen Biologikums Interferon-alpha2a wurden mittels gaußbeschleunigter MDs und einer CG-Simulation analysiert. Charakteristische Wechselwirkungspartner stimmten mit den Beobachtungen zu Oligomer-Konjugaten überein. In Einklang mit experimentellen Daten der Kooperationspartner zu den 10-kDa-Varianten deuteten zusätzliche Constrained-Network-Analysen, welche die Proteinflexibilität evaluieren, auf eine thermische Destabilisierung hin. Die Bioaktivität der untersuchten Konjugate wurde weiterhin erfolgreich mit den Gyrationsdurchmessern der modellierten Strukturen korreliert. / Bioconjugation of polymers, mainly the gold standard PEG, can improve pharmakokinetic properties but also modulate conformational stability of proteins. Mutation studies on (Asn)PEG4 conjugates of the beta-sheet rich human Pin 1 WW domain suggest various desolvation effects playing a crucial role: strengthening of intramolecular salt-bridges and NH-pi bonds, as well as entropically favorable water expulsion around hydrophobic patches and hydroxyl groups. The goal of this study is to characterize protein-polymer dynamics on a molecular level to drive forward rational design of new bioconjugates and establish viable PEG alternatives. A variety of descriptors was calculated from molecular dynamics simulations of WW conjugates and correlated with published stability data generating multivariate regression and logistic classification models. Compared to a previously published crystal structure-based guideline, QSPR models covered a structurally more diverse and bigger dataset and showed significantly improved predictions, including for a conjugate of the Src SH3 domain. Model descriptors captured modulations of solvation as well as protein-polymer interactions. Metadynamics simulations depicted PEG dynamics upon partial protein unfolding. Combined with simulations for conjugates of the alpha-helical Her2 affibody, data was further used to systematically dissect the dynamics of PEG and its alternatives LPG, PEtOx and PMeOx. PEG interacted with lysines and arginines near hydrophobic patches. LPG additionally adressed aspartates and glutamates via its hydroxyl groups. POx variants interacted with phenylalanines, tyrosines, as well as hydrogen bond donors via carbonyl groups. Larger conjugates (10 - 50 kDa PEG/LPG/PEtOx) of antiviral biologic Interferon-alpha2a were analyzed via Gaussian accelerated MDs and an exemplary CG simulation. Interaction patterns agreed with observations for oligomer conjugates. In accordance with experimental data of collaboration partners for 10 kDa variants, constrained network analyses, assessing protein flexibility, suggested a thermal destabilization upon bioconjugation. Bioactivity of conjugates was further successfully correlated with diameters of gyration of modeled structures.
72

Beschleunigung von Molekulardynamiksimulationen mittels Parallelisierung und Metadynamik

Lorkowski, Florian 17 September 2019 (has links)
Molekulardynamiksimulationen sind ein weit verbreitetes Werkzeug zur Untersuchung atomarer und molekularer Prozesse. Bei größeren Systemen, wie sie oft in praktischen Anwendungen vorkommen, sind die Simulationen jedoch sehr langsam und teilweise gar nicht durchführbar. Thema dieser Arbeit ist es, zwei Methoden zur Beschleunigung solcher Simulationen genauer zu untersuchen. Aus dem heutzutage selbstverständlichen Anstieg von Rechenleistung ergibt sich eine kontinuierliche Beschleunigung der Simulationen. Um die verfügbare Hardware optimal nutzen zu können, sind hierfür parallele Algorithmen notwendig. Im ersten Teil der Arbeit wird untersucht, welche Beschleunigung durch Parallelisierung auf der vorliegenden Rechentechnik erreicht werden kann. Dabei wird insbesondere auf den Vergleich von Haupt- und Grafikprozessoren sowie verschiedener Parallelisierungsumgebungen eingegangen. Eine noch größere Beschleunigung verspricht die Metadynamik. Dabei handelt es sich um ein Verfahren, welches das Abtasten des Konfigurationsraums effizienter gestaltet und somit das Auffinden seltener Ereignisse um mehrere Größenordnungen beschleunigen kann. Um diesen Ansatz zu überprüfen, wird die Selbst-Diffusion auf Kupferoberflächen sowohl mit Molekulardynamik als auch mit Metadynamik untersucht und die Ergebnisse verglichen. Anschließend wird Metadynamik auf die Diffusion in Silizium und Germanium angewendet – zwei Prozesse, deren Fortschritt durch seltene Ereignisse begrenzt wird und welche daher durch Molekulardynamik nicht zugänglich sind.:1 Einleitung 2 Molekulardynamik 2.1 Methode 2.1.1 Algorithmus 2.1.2 Potentiale 2.2 Rechenaufwand 2.2.1 Potentialreichweite 2.2.2 Nachbarschaftslisten 2.3 Verwendete Software 3 Parallelisierung 3.1 Eigenschaften paralleler Algorithmen 3.1.1 Metriken der Parallelisierung 3.1.2 Kommunikation zwischen Prozessen 3.1.3 Parallelisierungsumgebungen 3.2 Parallelisierung von Molekulardynamik 3.2.1 Atom-Dekomposition 3.2.2 Kraft-Dekomposition 3.2.3 Raum-Dekomposition 3.2.4 Neutral-Territory-Methoden 3.3 Erzielte Beschleunigungen 3.3.1 Verwendete Hardware 3.3.2 Rechnung auf CPUs 3.3.3 Rechnung auf GPUs 3.3.4 Zusammenfassung 4 Diffusion 4.1 Modellierung von Diffusion 4.1.1 Bestimmung des Diffusionskoeffizienten aus einer Trajektorie 4.1.2 Aktivierungsenergie 4.2 Diffusion auf Kupferoberflächen 4.2.1 Interpretation von Diffusion 4.2.2 Ergebnisse 5 Metadynamik 5.1 Methode 5.1.1 Algorithmus 5.1.2 Wahl der Parameter 5.1.3 Bestimmung von Übergangsraten 5.2 Diffusion auf Kupferoberflächen 5.2.1 Festlegung der kollektiven Variablen 5.2.2 Wahl der Parameter 5.2.3 Ergebnisse 5.3 Diffusion in Silizium und Germanium 5.3.1 Simulation mit einer kollektiven Variable 5.3.2 Simulation mit zwei kollektiven Variablen 5.3.3 Möglichkeiten für weitere kollektive Variablen 6 Zusammenfassung Anhang A Implementierung des Metadynamik-Algorithmus B Projektion der Freien-Energie-Fläche
73

Stochastische Untersuchung von Oberflächeninteraktionen hochenergetischer Teilchen

Rothe, Tom 28 November 2018 (has links)
Dünnfilmabscheidung wird häufig mit physikalischer Gasphasenabscheidung durchgeführt, wobei in letzter Zeit vermehrt höhere Teilchenenergien zur Steuerung des Wachstums eingesetzt werden. Dieser Abscheideprozess kann durch Multiskalensimulation optimiert werden, wofür die Oberflächeninteraktionen von Kupferteilchen bis 800 eV benötigt werden. Die Interaktionen sind jedoch bisher nur für geringe Teilchenenergien unterhalb von 300 eV bekannt. Die vorliegende Arbeit schließt diese Lücke, indem mit Molekulardynamik-Methoden (MD) die Oberflächeninteraktionen von Kupferteilchen bis 800 eV simuliert werden. Die dabei erhaltenen Ergebnisse zeigen eine deutliche Verbesserung der Genauigkeit und Zuverlässigkeit im Vergleich mit der Literatur, sowie im Vergleich mit Ergebnissen aus der zur Simulation der Wechselwirkung von hochenergetischen Ionen mit Materie etablierten Simulationsmethode TRIM. Es wird auch die Abhängigkeit der Oberflächeninteraktionen und der Verteilungen der gesputterten Teilchen von der Netzebene gezeigt. Außerdem konnten erstmals Ergebnisse für den für das Substratsputtern hochenergetischen Bereich von 300 eV bis 800 eV gewonnen werden. Diese stehen nun für die Simulation des Abscheideprozesses zur Verfügung.:Inhaltsverzeichnis Abbildungsverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1 Einführung 2 Grundlagen 2.1 Oberflächeninteraktionen 2.1.1 Sorption 2.1.2 Reflexion 2.1.3 Sputtern 2.2 Physikalische Grundlagen 2.2.1 Klassische Betrachtungsweise 2.2.2 Newtonsche Axiome 2.2.3 Statistische Physik 2.2.4 Festkörperphysik 2.3 Binary Collision Approximation 2.3.1 Grundlagen 2.3.2 TRIM 2.3.3 Erweiterungen von TRIM 2.3.4 Grenzen 2.4 Molekulardynamik 2.4.1 Allgemeines 2.4.2 Kraftfelder 2.4.3 Integrationsalgorithmen 2.4.4 Thermostate 2.4.5 Randbedingungen 2.4.6 LAMMPS 2.5 Materialsystem und Stand der Forschung 2.5.1 Materialsystem 2.5.2 Stand der Forschung 3. Methoden und Modelle 3.1 Modellsystem für die MD-Simulation 3.1.1 Aufbau des Modellsystems 3.1.2 Festzulegende Systemparameter 3.1.3 Projektilparameter 3.2 Ablauf der Simulation 3.2.1 Erstellen des Substrates 3.2.2 Weg des Projektils zum Substrat 3.2.3 Wechselwirkung und Zeit bis zum Gleichgewicht 3.3 Auswertungsverfahren 3.3.1 Auswertung der einzelnen Simulationen 3.3.2 Stochastische Betrachtung 3.3.3 Erstellen der Interaktionstabellen 4. Ergebnisse und Diskussion 4.1 Simulation mit TRIM 4.2 Vorversuche zur MD-Simulation 4.2.1 Potential 4.2.2 Thermostat 4.2.3 Thermostatanteil 4.2.4 Temperatur 4.2.5 Substratgröße 4.2.6 Netzebene 4.2.7 Erhaltene Systemparameter 4.3 Oberflächeninteraktionen 4.3.1 Auswertung (111)-Netzebene 4.3.2 Vergleich mit experimentellen Ergebnissen 4.3.3 Vergleich der Netzebenen 4.4 Energie- und Richtungsverteilungen 4.4.1 Reflektierte Teilchen 4.4.2 Gesputterte Teilchen 4.5 Vergleich der Methoden 4.6 Anwendung 5. Zusammenfassung und Ausblick 5.1 Zusammenfassung 5.2 Ausblick Literaturverzeichnis Danksagung Selbstständigkeitserklärung
74

Beobachtung und Steuerung molekularer Dynamik mit Femtosekunden-Laserpulsen / Observation and control of molecular dynamics using femtosecond laser pulses

Dietl, Christian January 2004 (has links) (PDF)
In dieser Arbeit wurden zwei Aspekte der Femtochemie mit den Methoden der Femtosekunden--Laserspektroskopie untersucht. Dabei wurden folgende Ziele verfolgt: Einerseits sollte die jüngst entwickelte Technik der adaptiven Pulsformung auf das Problem bindungsselektiver Photodissoziationsreaktionen angewandt werden, zum Anderen bestand die Aufgabe darin, die nichtadiabatische, photoinduzierte Dynamik am Beispiel der Photoisomerisierung von Stilben mit Hilfe der Photoelektronenspektroskopie zeitaufgelöst zu untersuchen. Die Methode der adaptiven Pulsformung wurde mit dem Ziel eingesetzt, eine bindungsselektive Photodissoziation zu verwirklichen. Dazu wurde diese Technik in Verbindung mit einem massenspektroskopischen Nachweis der Photofragmente verwendet. Die Experimente wurden an einigen Spezies der Methylhalogenide CH2XY (X,Y = Halogen) durchgeführt. Diese Verbindungen wurden als Modellsysteme gewählt, da sich gezeigt hat, dass auf Grund stark gekoppelter konkurrierender Dissoziationskanäle durch modenselektive Laseranregung keine Kontrolle erreicht werden kann. Mit dem hier durchgeführten Experiment an CH2ClBr wurde erfolgreich erstmals die Anwendung der adaptiven Femtosekunden-Pulsformung auf das Problem einer bindungsselektiven Photodissoziation demonstriert. Dabei konnte eine Steigerung der Dissoziation der stärkeren Kohlenstoff-Halogen Bindung um einen Faktor zwei erreicht werden. Weiterhin konnte experimentell gezeigt werden, dass das optimierte Produktverhältnis nicht durch eine einfache Variation der Laserpulsdauer oder Laserpulsenergie erzielt werden kann. Es wurde ein möglicher Mechanismus für die Kontrolle diskutiert, der im Gegensatz zu einem unmodulierten Laserpuls die Wellenpaketdynamik auf neutralen dissoziativen Potentialflächen zur Steuerung des Produktverhältnisses involviert. Wie sich aus einer genaueren Analyse des Fragmentspektrums ergab, wird durch den optimalen Laserpuls die Dissoziation in komplexer Weise moduliert. Dies zeigte sich z.B. auch durch eine Änderung des Isotopenverhältnisses in der Ausbeute des dissoziierten Br-Liganden vor und nach der Optimierung. Dieser Frage nach einer isotopenselektiven Photodissoziation wurde in einem weiteren Experiment an CH2Br2 nachgegangen. Dabei konnte jedoch nur eine geringe Variation von etwa fünf Prozent gegenüber dem natürlichen Isotopenverhältnis festgestellt werden. Als größtes experimentelles Problem stellte sich dabei die starke Intensitätsabhängigkeit der Produktausbeuten heraus, was die Suche nach der optimalen Pulsform stark einschränkte. Anhand des molekularen Photodetachments CH2I2-->CH2+I2 wurde gezeigt, dass durch die Analyse der optimalen Pulsformen Informationen über die Dynamik dieses Prozesses gewonnen werden können. Dazu wurde zunächst in einem Pump-Probe-Experiment die Dynamik der I2-Fragmentation nach einer Mehrphotonen-Anregung von CH2I2 mit 266nm Laserpulsen untersucht. Dieses Experiment ergab, dass das Molekül über einen angeregten Zwischenzustand auf einer sehr schnellen Zeitskala über Dissoziationskanälen zerfallen kann. Der dominante Kanal führt zu einer sequentiellen Abgabe einer der I-Liganden und resultiert in den Photoprodukten CH2I und I Im anderen Kanal, dem molekularen Photodetachment, werden die Photoprodukte I2 und CH2 gebildet. In einem Kontrollexperiment wurde dann versucht, das molekulare Photodetachment gegenüber dem dominanten sequentiellen Kanal mit geformten 800nm Laserpulsen zu optimieren. Es wurden Optimierungen mit dem Ziel der Maximierung der Ausbeute an den Photoprodukten I2 und CH2 gegenüber CH2I durchgeführt. Diese Experimente ergaben, dass für beide Fragmente des molekularen Photodetachments eine Steigerung des Produktverhältnisses um etwa einen Faktor drei möglich ist. Dabei zeigte sich, dass eine Maximierung auf ein Produktverhältnis (z.B. I2/CH2I) eine Steigerung des anderen um etwa den gleichen Faktor hervorruft. Dies ist ein deutlicher Hinweis, dass beide Photoprodukte über denselben Dissoziationskanal gebildet werden. Ein weiterer inweis wurde aus der Analyse der optimalen Pulsformen erhalten: In beiden Fällen weisen diese eine markante Doppelpulsstruktur mit einem zeitlichen Abstand von etwa 400fs auf. Dies erinnert stark an die Situation des Pump-Probe--Experiments, wo durch die Analyse des transienten Signals ebenfalls eine optimale Verzögerungszeit zwischen dem Pump- und Probe-Laserpuls von etwa 400fs ermittelt werden konnte, bei der die Produktverhältnisse gerade maximal sind. Im Vergleich zur Massenspektroskopie liefert die Photoelektronenspektroskopie in der kinetischen Energie der Photoelektronen eine zusätzliche Messgröße, die direkt Informationen über die Kerngeometrie des Systems liefern kann. Mit dieser Technik wurde die trans-cis-Photoisomerisierung von Stilben im ersten elektronisch angeregten Zustand S1(1Bu) zeitaufgelöst untersucht. Dabei ging es speziell um die Frage nach der Existenz eines weiteren 1Bu Zustandes, der in neueren theoretischen Untersuchungen diskutiert wurde. In einem Pump-Probe-Experiment wurde dazu das im Molekularstrahl präparierte trans-Stilben durch einen 266nm Laserpuls angeregt und die Dynamik durch einen weiteren 266nm Laserpuls abgefragt. Im Photoelektronenspektrum konnten zwei signifikante Beiträge mit unterschiedlicher Dynamik gefunden werden. Das transiente Signal des ersten Beitrags weist eine Zeitkonstante von etwa 20ps auf und konnte eindeutig der Isomerisierung des S1 Zustandes zugeordnet werden. Im Gegensatz dazu zeigte das Signal des zweiten Beitrags eine Zeitkonstante von 100fs. Dieses Signal könnte aus der Ionisation des S2 Zustandes resultieren, welcher bislang experimentell nicht beobachtet werden konnte. / Adaptive femtosecond quantum control has proven to be a very successful method in many different scientific fields like physics, chemistry or biology. This technique allows to go beyond observation, another important field of femtosecond laser spectroscopy, and to obtain active control over quantum-mechanical systems. It uses interference phenomena in the time and/or frequency domain to achieve selectivity among different reaction channels available to the system. Adaptive femtosecond quantum control has been implemented using automated control algorithms, namely genetic algorithms, embedded in a feedback loop. The Feedback is obtained directly in the experiment. This means, that no information is needed about the underlying complex physical processes. Adaptive pulse shaping in combination with mass spectroscopy was employed in order to control the photo dissociation dynamics of some methyl halides (CH2XY). In this context, methyl halides serve as a model system in order to study bond selective photochemistry, as it is known that mode selective laser excitation failed to achieve control due to strong non adiabatic coupling between the different dissociation channels. In a first experiment bond selective photodissociation on CH2ClBr was demonstrated. The results show, that by using optimally tailored laser pulses the cleavage of stronger carbon halogen bond can be enhanced by a factor of two. This enhancement cannot be explained by a simple variation of laser pulse energy or intensity, respectively. Further spectroscopic results indicate that the optimally formed laser pulse found in the optimization experiment involves dynamics on neutral dissociative potential surfaces. A more detailed analysis of the optimal pulse shape found in the control experiment revealed that the optimal laser pulse alters the photodissociation of CH2ClBr in subtle way. This was seen in the change of the branching ratio of the bromine isotopes following the excitation with the optimal laser pulse. In order to investigate this further, optimization of the bromine isotope ratio in CH2Br2 was studied, where however, only a small change could be achieved. This can mainly be explained by a strong laser intensity dependence of the absolute yield of the photoproduct, which leads to large errors in the product ration and thus confuses the optimization algorithm.In a third experiment it was demonstrated that the analysis of the optimal pulse shapes allows extracting information about the underlying molecular processes. Therefore the molecular photodetachment CH2I2-->CH2+I2 was investigated using pump-probe spectroscopy as well as adaptive pulse shaping. The photoproducts were again detected using mass spectroscopy. Time resolved experiments reveal an ultrafast dissociation of the molecule via an intermediate state resulting in the dominant photoproducts CH2I and I. As a minor contribution molecular photodetachment is observed leading to the products CH2 and I2. In an automated control experiment the branching ratio of these two reaction channels is varied by a factor of three as compared to a bandwidth limited laser pulse. It is found that maximization of one product ratio (e.g. I2/CH2I) also results in a maximization of the other (CH2/CH2I). This shows that the photoproducts I2 and CH2 originate form one common intermediate species. Analysis of the optimal pulse shape reveals a double pulse with a distance of 400fs between the two features. This can be directly compared to the results of the pump-probe experiment. There the ratio of the transient signals of I2 versus CH2I was analysed. It was found that the maximum is reached after 400fs after the excitation of the molecule by the pump laser pulse. In the second part of the thesis photoelectron spectroscopy in combination with time-resolved femtosecond laser spectroscopy was employed to investigate the isomerization dynamics of trans-Stilbene in its first excited state S1 (1Bu). In a pump-probe experiment the molecule was excited by a 266nm laser pulse to its first excited state about 0.5eV above the isomerization barrier. The dynamics of the intermediate species was probed by ionization with a second time delayed 266nm laser pulse and the kinetic energy of the photoelectrons was measured as a function of the pump-probe delay. The spectra obtained clearly indicate contributions from two distinct reaction pathways. The transient signal of the first contribution shows a time constant of about 20ps and can be assigned to the isomerization dynamics of trans-Stilbene on the S1 state. The second contribution exhibits an ultrafast dynamics of about 100fs decay time and can be attributed to a second electronics state. Theoretical studies indeed predict a second electronic state of same symmetry as S1in the energy region reached by the experiment.
75

Adaptive control of electronic excitation utilizing ultrafast laser pulses / Adaptive Kontrolle elektronischer Anregung mitels Femtosekunden-Laserpulsen

Papastathopoulos, Evangelos January 2005 (has links) (PDF)
The subject of this work has been the investigation of dynamical processes that occur during and after the interaction of matter with pulses of femtosecond laser radiation. The experiments presented here were performed in the gas phase and involve one atomic and several model molecular systems. Absorption of femtosecond laser radiation by these systems induces an electronic excitation, and subsequently their ionization, photofragmentation or isomerization. The specific adjustment of the excitation laser field properties offers the possibility to manipulate the induced electronic excitation and to influence the formation of the associated photoproducts. From the perspective of the employed spectroscopic methods, the development of photoelectron spectroscopy and its implementation in laser control experiments has been of particular interest in this thesis. This technique allows for a most direct and intuitive observation of electronic excitation dynamics in atomic as well as in complex polyatomic molecular systems. The propagation of an intermediate electronic transient state, associated to the formation of a particular photoproduct, can be interrogated by means of its correlation to a specific state of the atomic or molecular continuum. Such correlations involve the autoionization of the transient state, or by means of a second probe laser field, a structural correlation, as summarized by the Koopman's theorem (section 2.4.1). The technique of adaptive femtosecond quantum control has been the subject of development in our group for many years. The basic method, by which the temporal profile of near-infrared laser pulses at a central wavelength of 800 nm, can be adjusted, is a programmable femtosecond pulse-shaper that comprises of a zero dispersion compressor and a commercial liquid crystal modulator (LCD). This experimental arrangement was realized prior to this thesis and served as a starting point to extend the pulse-shaping technique to the ultraviolet spectral region. This technological development was realized for the purposes of the experiments presented in Chapter 5. It involves a combination of the LCD-pulse-shaper with frequency up-conversion techniques on the basis of producing specifically modulated laser pulses of central wavelength 266 nm. Furthermore, the optical method X-FROG had to be developed in order to characterize the often complex structure of generated ultraviolet pulses. In the adaptive control experiments presented in this work, the generated femtosecond laser pulses could be automatically adjusted by means of specifically addressing the 128 independent voltage parameters of the programmable liquid-crystal modulator. Additionally a machine learning algorithm was employed for the cause of defining laser pulse-shapes that delivered the desired (optimal) outcome in the investigated laser interaction processes. In Chapter 4, the technique of feedback-controlled femtosecond pulse shaping was combined with time-of-flight mass spectroscopy as well as photoelectron spectroscopy in order to investigate the multiphoton double ionization of atomic calcium. A pronounced absolute enhancement of the double ionization yield was obtained with optimized femtosecond laser pulses. On the basis of the measured photoelectron spectra and of the electron optimization experiments, a non-sequential process was found, which plays an important role in the formation of doubly charged Calcium ions. Then in Chapter 5, the dynamics following the pp* excitation of ethylene-like molecules were investigated. In this context, the model molecule stilbene was studied by means of femtosecond photoelectron spectroscopy. Due to the simplicity of its chemical structure, stilebene is one of the most famous models used in experimental as well as theoretical studies of isomerization dynamics. From the time-resolved experiments described in that chapter, new spectroscopic data involving the second excited electronic state S2 of the molecule were acquired. The second ethylenic product was the molecule tetrakis (dimethylamino) ethylene (TDMAE). Due to the presence of numerous lone pair electrons on the four dimethylamino groups, TDMAE exhibits a much more complex structure than stilbene. Nevertheless, previously reported studies on the dynamics of TDMAE provided vital information for planning and conducting a successful optimisation control experiment of the wavepacket propagation upon the (pp*) S1 excited potential surface of the molecule. Finally, in Chapter 6 the possibility of employing femtosecond laser pulses as an alternative method for activating a metallocene molecular catalyst was addressed. By means of an adaptive laser control scheme, an optimization experiment was realized. There, the target was the selective cleavage of one methyl-ligand of the model catalyst (Cp)^2Zr(CH3)^2, which induces a catalytic coordination position on the molecule. The spectroscopic studies presented in that chapter were performed in collaboration to the company BASF A.G. and constitute a proof-of principle attempt for a commercial application of the adaptive femtosecond quantum control technique. / Das Thema der hier vorgestellten Arbeit umfasst die Untersuchung von dynamischen Prozessen, die während der Wechselwirkung von Femtosekunden Laserpulsen mit Atomen und Molekülen stattfinden. Die entsprechenden Experimente sind in der Gasphase durchgeführt worden, wobei ein Atom- und mehrere Molekül-Modellsysteme untergesucht wurden. Die Absorption von Femtosekunden-Laserstrahlung induziert die elektronische Anregung der quantumsmechanischen Systeme und eventuell deren Ionisation, Photofragmentnation oder Isomerisierung. Die gezielte Einstellung der Laserfeldeigenschaften bietet die Möglichkeit, diese Prozesse zu beeinflussen, beziehungsweise die Formung von entsprechenden Photoprodukten zu steuern. Im Hinblick auf die verwendeten spektroskopischen Methoden wurde besonderes Interesse auf die Entwicklung von Photoelektronen-Spektroskopie und in deren Einsatz zur Durchführung von laserinduzierten Kontrollexperimente gelegt. Photoelektronen-Spektroskopie ermöglicht die direkte und intuitive Beobachtung elektronischer Anregungsdynamik in Atomen sowie in komplexen mehreratomaren Molekülsystemen. Die zeitliche Entwicklung von angeregten elektronischen Zuständen ist oft bei der Formung von bestimmten Photoprodukten assoziiert. Die Dynamik kann mittels der Korrelation des sich entwickelnden Zustandes zu den Kontinuumzuständen des Atom- oder Molekül-Systems untersucht werden. Das detektionsverfahren umfasst die Autoionization oder, mittels eines zweiten Laserpulses, die Weiteranregung des Systems ins Kontinuum. Denn, die Beobachtung der entsprechenden Strukturänderungen des Systems erfolgt mittels der Korrelation des zwischenangeregten Zustand zu den verschiedenen Kontinuumzuständen (Koopman Theorem). Seit mehreren Jahren wurde die Methode der adaptiven Femtosekunden-Pulsformung in unserer Gruppe entwickelt. Die anfängliche experimentelle Anordnung besteht aus einer Kombination von einem Flüssig-Kristall-Modulator (LCD) und einen Null-Dispersions-Kompressor. Damit ist es möglich, das zeitliche Profil von Laserpulsen im Infrarot (800 nm) Spektralbereich automatisch zu modulieren. Diese Entwicklungsarbeit stand bereits zu Verfügung vor dem Anfang der vorgestellten Dissertation. Hier wurde die Erweiterung dieser Methode in den uravioletten Spektralbereich vorgestellt (Kapitel 5). Es umfasst eine Kombination von dem bestehenden LCD-Pulsformer und einem Verfahren zur Frequenzkonversion, das die Erzeugung von modulierten aserpulsen mit eine Wellenlänge 266 nm ermöglicht. Die entsprechende Charakterisierungsmethoden (X-FROG) wurden ebenfalls entwickelt. Die Femtosekunden-Laserpulse können automatisch moduliert werden durch die entsprechende Einstellung der 128 unabhängigen Spannungsparametern des LCD-Modulators. Zusätzlich wurden die optimale Parameter für die Kontrolle eines bestimmten anregungsprozess mittels eines Machine-Learning Algorithmus gefunden. In Kapitel 4 wurde die Mehrphoton-Doppleionization von Calciumatomen untersucht. Dabei wurde die Methode der adaptiven Pulsformung zusammen mit time-of-flight Massenspektroskopie und Photoelektronenspektroskopie ingesetzt. Das absolute Signal der Doppleionization konnte verdoppelt werden durch die Anregung mit bestimmten komplexen Pulsformen. Gerade bei den Optimierungexperimenten an photoelektronenspektra konnte ein „non-sequential" Prozess entdeckt werden, der eine wichtige Rolle bei der Doppleionization von Calcium spielt. In Kapitel 5 wurde die Dynamik von pp* Anregungsprozessen von Ethylenähnlichen-Moleküle untersucht. Im diesen Zusammenhang wurde das Modelmolekül Stilbene mittels Photoelektronenspektroskopie weiteruntersucht. Wegen seiner einfachen Struktur ist Stilbene eines der meistbenutzten Moleküle für Untersuchungen zur Photoisomerisierungsdynamik. Gerade bei den hier dargestellten zeitaufgelüsten Messungen wurde neu spektroskopische Information über den zweiten angeregten elektronische Zustand S2 entdeckt. Das zweite untersuchte Molekül ist Tetrakis Dimethylamino) Ethylen (TDMAE). Wegen den zahlreichen „Lone-Pair" Elektronen an seinen Dimethylamino Gruppen ist die gesamte Struktur des Moleküls deutlich komplexer im Vergleich zu Stilbene. Allerdings, ausgehend von gegebenen spektroskopischen Informationen aus der Literatur konnte ein erfolgreiches Kontrollexperiment an der Wellenpackets-Propagation des pp* Anregungsprozesses (auf dem S1 Zustand) geplant und durchgeführt werden. In Kapitel 6 wurde schließlich die Möglichkeit erforscht, einen Metallocene-Katalysator mittels Femtosekunden-Laserpulsen zu aktivieren. Das Kotrollschema der adaptiven Pulsformung wurde dabei eingesetzt, um eine der zwei identischen Methylgruppen des Moleküls selektiv abzuspalten, was zur Aktivierung des Katalysators führt. Diese spektroskopische Untersuchung wurde in Kollaboration mit der Firma BASF A.G. durchgeführt. Es stellt einen Grundlagenversuch der industriellen Anwendung der adaptiven Quantumskontrollemethode dar.
76

Pikosekunden-zeitaufgelöste Deaktivierungsprozesse in isolierten Molekülen - Fluorenon, NDCA, Me-NI und NTCDA / Picosecond time-resolved deactivation processes in isolated molecules - Fluorenone, NDCA, Me-NI and NTCDA

Gerbich, Thiemo M. P. January 2015 (has links) (PDF)
Im Rahmen der vorliegenden Dissertation wurden die Dynamiken von strahlungslosen Deaktivierungsprozessen von vier verschiedenen Molekülen im elektronisch angeregten Zustand untersucht. Ein fundiertes Verständnis der intramolekularen Energieumverteilung in isolierten pi-konjugierten Systemen ist neben dem Modellcharakter auch für Anwendungen in der organischen Elektronik von Interesse. Die Untersuchungen dienen zudem als optimaler Maßstab für theoretische Simulationen, die auf eine Nachbildung der molekularen Dynamik ausgerichtet sind. Die Inbetriebnahme des Pikosekunden-Lasersystems stellt in der Arbeitsgruppe ein großes Potential für die Untersuchung der Dynamik von isolierten pi-konjugierten Molekülen zur Verfügung. Erste Experimente konnten an unterschiedlichen Heterocyclen mit interessantem zeitlichen Verhalten erfolgreich durchgeführt werden und lieferten bereits wichtige Erkenntnisse über die strahlungslose Deaktivierung auf der ps-Zeitskala. Selbst für große Moleküle mit geringem Dampfdruck, die nur mit hohem experimentellen Aufwand im isolierten Zustand charakterisierbar sind, konnten Relaxationszeiten der angeregten Zustände ermittelt werden. Der Fokus der einzelnen Studien lag in der Erforschung der isolierten Moleküle, welche durch Anwendung der Molekularstrahl-Technik mit zeitaufgelöster REMPI-Spektroskopie anhand des ps-Systems untersucht werden sollten. Zur Kontrolle der experimentellen Ergebnisse wurden zudem Vergleichsmessungen der transienten Absorptionsspektroskopie (TA) in der Flüssigphase herangezogen, wodurch eine fundierte Interpretation der Dynamik möglich wurde. Zu den wichtigen Zielen gehörten jedoch die Vergleiche der experimentellen Ergebnisse von isolierten Molekülen mit Berechnungen der Zustandsenergien sowie Simulationen der Moleküldynamik aus dem Theorie-Arbeitskreis von Prof. Mitric. Auf diese Weise konnten wichtige Erkenntnisse über die Dynamik der Deaktivierungsprozesse gewonnen werden. Die Kombination der Gasphasen-Experimente mit TA-Messungen in der Flüssigphase hat sich als besonders nützlich erwiesen, um bei mehrstufigen Deaktivierungsprozessen einen erweiterten Einblick in die Dynamik der Moleküle zu erhalten. - So konnte bei Fluorenon in Cyclohexan und Acetonitril durch Vergleich der Anregungen des S3- und S1-Zustands eine zusätzliche Zeitkonstante von 8-16 ps beobachtet werden, welche die innere Umwandlung zum S1-Zustand dokumentiert und die Ergebnisse der Gasphasen-Messungen bestätigt. - Durch Verwendung von Lösungsmitteln unterschiedlicher Polarität und der damit verbundenen Verschiebung der elektronischen Zustände von Fluorenon konnte zudem der zweite Deaktivierungsprozess eindeutig einem ISC-Prozess mit Zeitkonstanten von 120-154 ps zugeordnet werden. In der Gasphase wurde dieser Prozess lediglich als langlebiger Offset wahrgenommen. - Unterschiedliche Anregungsenergien zeigten bei TA-Messungen von NDCA eine nahezu identische Moleküldynamik mit ca. 200 ps, während für isoliertes NDCA ein starker Abfall der Lebensdauer mit zunehmender Schwingungsenergie beobachtet wurde. In der Gasphase wird somit von einer Deaktivierung über eine Energiebarriere ausgegangen, während in Lösung eine zu schnelle Abkühlung durch Schwingungsrelaxation diesen Prozess verhindert. - Bei NTCDA konnten in den TA-Messungen nach Anregung des S1-Zustands eine Relaxation in die Triplett-Umgebung innerhalb von wenigen Pikosekunden beobachtet werden, was im Einklang mit der sehr schnellen Deaktivierung in der Gasphase betrachtet werden kann. Eine ausführliche Vergleichsstudie von isolierten Molekülen mit computergestützten Rechnungen und Simulationen wurde für die Moleküle NDCA und Me-NI durchgeführt. Dabei wurde explizit auf den Einfluss von Spin-Bahn-Kopplungen und konischen Durchschneidungen eingegangen, welche zu konkurrierenden Deaktivierungsprozessen des S1-Zustands führen können. - Durch Simulationen der Surface-Hopping-Dynamik wurde deutlich, dass bei NDCA und Me-NI im ersten angeregten Zustand eine konische Durchschneidung (CI) zwischen dem S1- und S0-Zustand erreicht werden kann. - Während die Dynamik von NDCA bei höherer Schwingungsanregung stark durch die CI dominiert wird, spielt die direkte Relaxation in den elektronischen Grundzustand bei Me-NI offenbar keine Rolle. - In Abwesenheit der CI zeigen NDCA und Me-NI in einer mit Spin-Bahn-Kopplung erweiterten Simulation der Populationsdynamik einen signifikanten Populationstransfer in die Triplett-Umgebung (T1-T4). Eine innere Umwandlung in den Grundzustand konnte jedoch nur bei Erreichen der CI beobachtet werden. Eine weitere Verbesserung der ps-Experimente kann durch Aufbau eines Photoelektronen-Spektrometers erreicht werden, da durch diese Technik eine präzisere Aussage darüber getroffen werden kann, aus welchem elektronischen Zustand die Moleküle ionisiert wurden. Eine Unterscheidung von ISC- und IC-Prozessen könnte somit gewährleistet werden. / In this thesis the dynamics of radiationless deactivation of electronic excited states of four different molecules were investigated. A solid understanding of the intramolecular energy redistribution in excited isolated pi-conjugated molecules becomes increasingly important for applications of organic electronics and additionally is a key to understand molecular models. Such studies serve as benchmarks for computational studies for accurately simulating the molecular dynamics. The new ps laser system offers a great potential for experiments on the dynamics of isolated pi-conjugated molecules. Isolated molecules were examined by applying the molecular beam technique in combination with time-resolved REMPI spectroscopy. First experiments on several heterocycles were carried out, providing important insights on the radiationless deactivation on a ps time scale. Despite experimental difficulties in the characterization of isolated large molecules with very low vapor pressure, relaxation time constants of their excited states could be obtained. To verify the experimental results additional measurements of transient absorption spectroscopy (TA) in solution were carried out for comparison, enabling a solid interpretation of the dynamics. However, one of the main objectives was to compare the experimental results of the isolated molecules with calculated excitation energies and simulations of the molecular dynamics provided by the theoretical working group of Prof. Mitric. In this manner, important insights into the dynamics of deactivation processes could be obtained. The combination of gas phase experiments and solution phase TA measurements has provided improved insight in the molecular dynamics in the case of multistage deactivation processes, as emphasized by the following examples. - By comparing the dynamics of the S3 and S1 states of fluorenone in solution a time constant of 8 – 16 ps could be observed which is only present after excitation in the S3 state. This lifetime represents the internal conversion into the S1 state and validates the results of the gas phase measurements. - Using solutions with different polarities related in a shift of the electronic excited states of fluorenone, which could be utilized to assign time constants of 120 - 154 ps to an intersystem crossing. In the gas phase the corresponding process could only be perceived as a long-living offset. - TA measurements of NDCA in solution with different excitation energies showed nearly identically dynamics, while a sharp drop of the lifetimes was observed in the gas phase when increasing the vibrational energy. This process is associated with a deactivation over an energy barrier while it is prevented in solution due to rapid cooling by vibrational relaxation. - After excitation into the S1 state of NTCDA the TA measurements yielded a fast relaxation in the triplet manifold within a few picoseconds. This observation is in accordance with the fast time constants of the gas phase experiments. A detailed comparative study of isolated molecules and computational calculations and simulations was carried out for NDCA and Me-NI. The influence of spin-orbit couplings and conical intersections (CI) and the associated competition of different deactivation channels in the S1 state were discussed thoroughly. The main results are depicted in the following. - Surface hopping dynamics simulations for NDCA and Me-NI showed the presence of a conical intersection between the S1 and the S0 state which can be reached from the first excited singlet state. - While for higher vibrational excitation the dynamics of NDCA is strongly dominated by the CI, a direct relaxation into the electronic ground state is apparently not relevant for Me-NI. - Simulating the population dynamics in absence of the CI, a significant population transfer into the triplet manifold (T1-T4) could be observed for both NDCA and Me-NI. A deactivation into the electronic ground state via internal conversion could only be observed when the CI was present. Further improvements of the ps experiments could be achieved by constructing a photoelectron spectrometer, which allows more detailed information about the type of the electronic states. Thus it would be possible to distinguish between ISC and IC processes.
77

Theoretical and Experimental Investigations on Solid State Reactions: Phase Transition Mechanisms, Ionic Conduction, Domain Formation and Interface Reactivity

Leoni, Stefano 03 January 2012 (has links) (PDF)
In the practice of solid state chemistry, structural phase transitions are fairly common events. Nonetheless, their understanding, in terms of both: A rationalization of the observed changes in symmetry pattern and; An understanding of the mechanisms allowing for a particular transformation, are outstanding problems. The thermodynamic classification of phase transitions distinguishes between first and second order transitions, on the basis of the discontinuous behavior of quantities related to first or second derivatives of the free energy, respectively. Small atomic displacements are typically associated with second order phase transitions, and latent heat changes amount to a few calories per gram only. Additionally, the symmetries of the phases surrounding the transition are typically in the relation of a group and a subgroup. Reconstructive phase transitions, on the contrary, involve breaking of (large) parts of the bond scaffolding of the initial structure, and exhibit drastic changes at the transition point, with large latent heat and hysteresis effects. The corresponding atomic displacements can be in the order of the lattice parameters, and no group-subgroup is found, between the symmetry of the phases. These type of transitions have generally a strong first-order character. Landau theory accounts for continuous, second-order phase transitions. As a phenomenological theory, it does not establish the existence of a phase transition, which remains an experimental fact. It only bridges microscopic characteristics, like space-group symmetries and structural changes, or phonon softening effects, with measurable macroscopic quantities. Therein, distortions are carried by an order parameter, which fully specifies the form of the analytical variational free energy. The latter is continuous and derivable with respect to temperature, pressure and atomic displacement, at the transition point. First order, non-continuous phase transitions are still within the scope of Landau theory in the mentioned special case of the existence of a group-to-(isotropic) subgroup relationship. In the majority of cases, however, and for the most interesting phase transitions (for basic and applied research), such a relationship is missing, making the choice of an order parameter less straightforward. Most of the allotropic transformations of the elements, many intermetallic systems, and numerous insulating systems belongs to this class. This class also includes most interesting and fundamental electronic effects, like metallization in perovskites or spinel oxides for example. This very simple fact of a missing symmetry condition has helped reinforcing the opinion of first-order phase transitions being a world apart, and possibly contributed to discouraging a firm theory to develop, able to account for their transformation mechanisms and the change of physical properties across phase transition. The thermodynamic distinction between first and second order phase transitions is too narrow, as, in case of first order phase transitions, it embraces both weakly discontinuous transition and reconstructive ones, where bonds are being strongly modified. Especially, a mean to qualify the distance between two structures (geometric, with respect to symmetry, a.s.o.), is missing. Clearly, a group-subgroup relationship may, and typically does imply shortest shifting distances, as a tiny atomic displacement can already do for a symmetry lowering. Naively, missing such a relation means no constraints, and apparently no means to conclude at a connection of two structures in general, let alone a full mechanistic analysis. First order phase transitions proceed by nucleation and subsequent growth of the new phase from the initial one. Different from (second-order) continuous phase transitions, they do imply coexistence of the transforming motifs. The discontinuity in some order parameter between the two phases is driven by lowering of the free energy as the new phase forms. However, close to the transition, the original phase remains metastable, and a fluctuation is needed to cause the formation of the new phase to set in. Such a process responds to thermal changes, and depending on the height of the nucleation barrier, its rate may be slower or faster. In the former case, large deviations from equilibrium may be required to achieve transformation to the stable phase, which means that large hysteresis effects will be observed in the course of transformation. The intent of this work consists in giving a face to the intermediate configurations appearing in first order phase transitions, in solid-solid reconstructive processes. Apart of a mechanistic elucidation, consisting in answering the question “Which atomic displacements bring structural motif A into structural motif B ?”, another purpose of this work is a rather pedagogical one, that is, showing that first-order phase transitions can be understood in detail, not only in principle but in fact. The core of the examples illustrated in this work is concerned with phase transformations where pressure represents the thermodynamic controlling parameter. Pressure is extensively used in chemical synthesis, as a mean to achieve novel properties, optical or mechanical just to mention a few. Additionally, reports on novel high-pressure polymorphs are regularly appearing. In this sense, pressure is a relevant parameter for approaching fundamental questions in solid state chemistry.
78

Thermal diffusion in liquid mixtures and polymer solutions by molecular dynamics simulations

Zhang, Meimei. Unknown Date (has links)
Techn. University, Diss., 2007--Darmstadt.
79

Ab initio molecular dynamics simulation of diffusion in silicon /

Sahli, Beat. January 2007 (has links)
Eidgenöss. Techn. Hochsch., Diss.--Zürich, 2007.
80

Ein Modell für gekoppelten Elektronen- und Protonentransfer an Metallelektroden

Grimminger, Jens, January 2006 (has links)
Ulm, Univ., Diss., 2006.

Page generated in 0.0472 seconds