• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 3
  • Tagged with
  • 75
  • 74
  • 47
  • 47
  • 39
  • 39
  • 39
  • 38
  • 21
  • 15
  • 14
  • 14
  • 14
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterisation of <em>EGFR and <em>KRAS mutations in non-small cell lung cancer</em></em>

Martinsson, Caroline January 2010 (has links)
<p><strong>Background: </strong>Lung cancer is the leading cause of cancer-related death and one of the most common cancer types worldwide. Epidermal growth factor receptor (EGFR) has been shown to be an important therapeutic target in non-small cell lung cancer. Kirsten rat sarcoma viral oncogene homologue (KRAS) is a downstream signalling molecule in the EGFR pathway. Lung cancer patients with <em>EGFR </em>mutations respond to tyrosine EGFR inhibitor therapy, in contrast, patients with <em>KRAS </em>mutations do not benefit of such treatment.</p><p><strong>Methods: </strong>This study investigates the frequency of <em>EGFR </em>and <em>KRAS </em>mutations in non-small cell lung cancer patients. Fifty-one lung cancer patients with primary non-small cell lung cancer diagnosed between 1995 and 2005 in the Uppsala-Örebro region were analysed by Sanger sequencing and Pyrosequencing to determine the mutation status of these genes.</p><p><strong>Results: </strong>Five <em>EGFR </em>mutations were found in four patients (8%), two deletions in exon 19, one point mutation in exon 20 and two point mutations in exon 21. <em>KRAS </em>mutations were found in 12 patients (24%), ten codon 12 mutations and two codon 61 mutations.</p><p><strong>Conclusions: </strong>This study confirms previous observations regarding the frequency of <em>EGFR </em>and <em>KRAS </em>mutations in non-small cell lung cancer. Mutations in <em>EGFR </em>and <em>KRAS </em>were mutually exclusive, indicating that both mutations present relevant tumorigenic genomic aberrations.</p>
12

NMR Investigations of Peptide-Membrane Interactions, Modulation of Peptide-Lipid Interaction as a Switch in Signaling across the Lipid Bilayer

Unnerståle, Sofia January 2010 (has links)
The complexity of multi cellular organisms demands systems that facilitate communicationbetween cells. The neurons in our brains for instance are specialized in this cell-cellcommunication. The flow of ions, through their different ion channels, across the membrane, isresponsible for almost all of the communication between neurons in the brain by changing theneurons membrane potentials. Voltage-gated ion channels open when a certain thresholdpotential is reached. This change in membrane potential is detected by voltage-sensors in the ionchannels. In this licentiate thesis the Homo sapiens voltage- and calcium-gated BK potassiumchannel (HsapBK) has been studied. The NMR solution structure of the voltage-sensor ofHsapBK was solved to shed light upon the voltage-gating in these channels. Structures of othervoltage-gated potassium channels (Kv) have been determined by other groups, enablingcomparison among different types of Kv channels. Interestingly, the peptide-lipid interactions ofthe voltage-sensor in HsapBK are crucial for its mechanism of action.Uni cellular organisms need to sense their environment too, to be able to move towardsmore favorable areas and from less favorable ones, and to adapt their gene profiles to currentcircumstances. This is accomplished by the two-component system, comprising a sensor proteinand a response regulator. The sensor protein transfers signals across the membrane to thecytoplasm. Many sensor proteins contain a HAMP domain close to the membrane that isinvolved in transmitting the signal. The mechanism of this transfer is not yet revealed. Ourstudies show that HAMP domains can be divided into two groups based on the membraneinteraction of their AS1 segments. Further, these two groups are suggested to work by differentmechanisms; one membrane-dependent and one membrane-independent mechanism.Both the voltage-gating mechanism and the signal transduction carried out by HAMPdomains in the membrane-dependent group, demand peptide-lipid interactions that can be readilymodulated. This modulation enables movement of peptides within membranes or within thelipid-water interface. These conditions make these peptides especially suitable for NMR studies.
13

Inflammatory mediators in perinatal infections

Døllner, Henrik January 2002 (has links)
No description available.
14

Protein Microarray Chips

Klenkar, Goran January 2007 (has links)
Livet tas för givet av de flesta. Det finns däremot många som ägnar stora delar av sitt liv för att försöka lösa dess mysterier. En del av lösningen ligger i att förstå hur alla molekyler är sammanlänkade i det gigantiska nätverk som definierar den levande organismen. Under det senaste seklet har en hel del forskning utförts för att kartlägga dessa nätverk. Resultatet av dessa mödor kan vi se i de läkemedel som vi har idag och som har utvecklats för att bota eller åtminstone lindra olika sjukdomar och tillstånd. Dessvärre finns det fortfarande många sjukdomar som är obotliga (t.ex. cancer) och mycket arbete krävs för att förstå dem till fullo och kunna designa framgångsrika behandlingar. Arbetet i denna avhandling beskriver en analytisk plattform som kan användas för att effektivisera kartläggningsprocessen; protein-mikroarrayer. Mikroarrayer är ytor som har mikrometerstora (tusendels millimeter) strukturer i ett regelbundet mönster med möjligheten att studera många interaktioner mellan biologiska molekyler samtidigt. Detta medför snabbare och fler analyser - till en lägre kostnad. Protein-mikroarrayer har funnits i ungefär ett decennium och har följt i fotspåren av de framgångsrika DNA-mikroarrayerna. Man bedömer att protein-mikroarrayerna har en minst lika stor potential som DNA mikroarrayerna då det egentligen är mer relevant att studera proteiner, som är de funktionsreglerande molekylerna i en organism. Vi har i detta arbete tillverkat modellytor för stabil inbindning av proteiner, som lämnar dem intakta, funktionella och korrekt orienterade i ett mikroarray format. Därmed har vi adresserat ett stort problem med protein mikroarrays, nämligen att proteiner är känsliga molekyler och har i många fall svårt att överleva tillverkningsprocessen av mikroarrayerna. Vi har även studerat en metod att tillverka mikroarrayer av proteiner bundna till strukturer, som modellerats att efterlikna cellytor. Detta är särkilt viktigt eftersom många (hälften) av dagens (och säkerligen framtidens) läkemedel är riktade mot att påverka denna typ av proteiner och att studera dessa i sin naturliga miljö är därför väldigt relevant. I ett annat projekt har vi använt protein mikroarrayer för att detektera fyra vanliga droger (heroin, amfetamin, ecstasy och kokain). Detektionen baseras på användandet av antikroppar som lossnar från platser på ytan när de kommer i kontakt med ett narkotikum. Detta koncept kan enkelt utvecklas till att detektera mer än bara fyra droger. Vi har även lyckats att parallellt mäta förekomsten av en annan typ av förening på mikroarray ytan, nämligen det explosiva ämnet trinitrotoluen (TNT). Detta visar på en mångsidig plattform för detektionen av i princip vilken typ av farlig eller olaglig substans som helst - och på en yta! Vi föreställer oss därför att möjliga tillämpningsområden finns inom brottsbekämpning, i kampen mot terrorism och mot narkotikamissbruk etc. Mikroarrayerna har i denna avhandling utforskats med optiska metoder som tillåter studie av omärkta proteiner, vilket resulterar i så naturliga molekyler som möjligt. / Life is a thing taken for granted by most. However, it is the life-long quest of many to unravel the mysteries of it. Understanding and characterizing the incomprehensively complex molecular interaction networks within a biological organism, which defines that organism, is a vital prerequisite to understand life itself. Already, there has been a lot of research conducted and a large knowledge has been obtained about these pathways over, especially, the last century. We have seen the fruits of these labors in e.g. the development of medicines which have been able to cure or at least arrest many diseases and conditions. However, many diseases are still incurable (e.g. cancer) and a lot more work is still needed for understanding them fully and designing successful treatments. This work describes a generic analytical tool platform for aiding in more efficient (bio)molecular interaction mapping analyses; protein microarray chips. Microarray chips are surfaces with micrometer sized features with the possibility of studying the interactions of many (thousands to tens of thousands) (bio)molecules in parallel. This allows for a higher throughput of analyses to be performed at a reduced time and cost. Protein microarrays have been around for approximately a decade, following in the footsteps of the, so far, more successfully used DNA microarrays (developed in the 1990s). Microarrays of proteins are more difficult to produce because of the more complex nature of proteins as compared to DNA. In our work we have constructed model surfaces which allow for the stable, highly oriented, and functional immobilization of proteins in an array format. Our capture molecules are based on multivalent units of the chelator nitrilotriacetic acid (NTA), which is able to bind histidine-tagged proteins. Furthermore, we have explored an approach for studying lipid membrane bound systems, e.g. receptor-ligand interactions, in a parallelized, microarray format. The approach relies on the addressable, DNA-mediated adsorption of tagged lipid vesicles. In an analogous work we have used the protein microarray concept for the detection of four common narcotics (heroin, amphetamine, ecstasy, and cocaine). The detection is based on the displacement of loosely bound antibodies from surface array positions upon injection of a specific target analyte, i.e. a narcotic substance. The proof-of-concept chip can easily be expanded to monitor many more narcotic substances. In addition, we have also been able to simultaneously detect the explosive trinitrotoluene (TNT) along with the narcotics, showing that the chip is a versatile platform for the detection of virtually any type of harmful or illegal compound. This type of biosensor system is potentially envisaged to be used in the fight against crime, terrorism, drug abuse etc. Infrared reflection absorption spectroscopy together with ellipsometry has been used to characterize molecular layers used in the fabrication processes of the microarray features. Imaging surface plasmon resonance operating in the ellipsometric mode is subsequently used for functional evaluation of the microarrays using a well-defined receptor-ligand model system. This approach allows simultaneous and continuous monitoring of binding events taking place in multiple regions of interest on the microarray chip. A common characteristic of all the instrumentation used is that there is no requirement for labeling of the biomolecules to be detected, e.g. with fluorescent or radioactive probes. This feature allows for a flexible assay design and the use of more native proteins, without any time-consuming pretreatments.
15

NMR studies of host-pathogen interactions

Petzold, Katja January 2009 (has links)
This thesis describes the use of Nuclear Magnetic Resonance (NMR) for characterizing two host-pathogen interactions: The behavior of a regulatory RNA of the Hepatitis B virus (HBV) and the attachment of Helicobacter pylori (H. pylori) to the gastric mucosa. NMR is a powerful tool in biomedicine, because molecules ranging from small ligands to biomacromolecules can be studied with atomic resolution. Different NMR experiments are designed to determine structures, or to monitor interactions, folding, stability or motion. Paper I describes the analysis of the motions of a regulatory RNA of HBV. The NMR structure of the RNA had revealed before that several well-conserved nucleotides adopt multiple conformations. Therefore an analysis of possible underlying motions was undertaken using two different NMR techniques, one of which (off-resonance ROESY) was applied to nucleic acids for the first time. The observed motions suggest an explanation why the structurally poorly defined nucleotides are highly conserved. In paper II we improved the ROESY NMR experiment, which is used to measure internuclear distances for structure determination of medium-sized molecules. Using a small protein and an organometallic complex as examples, we demonstrated that the new EASY ROESY experiment yields clean spectra that can directly be integrated to derive interatomic distances. H. pylori, the bacterium involved in peptic ulcer disease and gastric cancer, survives in the harsh acidic environment of the stomach. It possesses many membrane proteins which mediate adherence, raising the question, if their activity is related to membrane composition. In paper III &amp; IV we analyzed therefore the phospholipid composition of H. pylori membranes. In paper III, an advanced method for the analysis of the phospholipid composition of biological membranes was developed. The two-dimensional semi-constant-time 31P,1H-COSY experiment combines information from phosphorus and hydrogen atoms of phospholipids for their unambiguous identification. Furthermore, the high resolution of the two-dimensional experiment allows the quantification of phospholipids where conventional methods fail. In paper IV we applied the new experiment to analyze the lipid composition of whole H. pylori cells, their inner and outer membranes, and of vesicles shed by the bacterium. The goal of this study was to characterize the vesicles which are suggested to play a role in the inflammation process. We established that the outer membrane and the vesicles have similar phospholipid compositions, suggesting that the vesicles are largely derived from the outer membrane. The NMR results presented here elucidate details of molecular systems engaged in pathogenicity, as basis for therapeutic strategies against these pathogens.
16

In vivo and in vitro approaches to induce beta cells from stem and progenitor cells

Selander, Lars January 2009 (has links)
Diabetes or diabetes mellitus which is the correct medical term is a medical condition were the affected person lack the ability to regulate his or her blood glucose levels. This inability is directly due to the fact that the insulin producing cells, residing in the pancreas, can’t meet the body’s demand for insulin. It is estimated that close to 200 million people are suffering from diabetes today and this number is predicted to double within 20 years. Of the approximately 200 million people suffering from diabetes today approximately 20 million are in dependent on daily injections of insulin. Being dependent on exogenous insulin is not only an inconvenience it also increase the risk for several medical complications such as stroke, heart disorders, kidney failure, retinopathy, atherosclerosis and impaired wound healing. The major risk factor for all these complications is long periods of high blood sugar levels that is damaging to thin blood vessels and nerves.  Even in the best of situations the blood sugar levels of a diabetic with need for daily insulin injections can never be as well controlled as in a healthy individual. Increased understanding in the developmental processes behind the formation of the pancreas, and more specifically the insulin producing β-cells could result in new treatments for diabetics. By imitating the in vivo conditions generating pancreatic development scientist are now able to induce embryonic stem cells to differentiate into pancreatic progenitors as well as insulin producing β-cells in vitro. These in vitro generated pancreatic cells might in the future serve as a donor source for transplantations, thereby restoring the insulin producing capability of diabetic patients. An alternative approach to restore insulin production in diabetics is to influence cells in the pancreas to generate more insulin producing cells. To successfully achieve this, what cell types have the capacity to generate β-cells needs to be appreciated. In this thesis papers concerning in vitro differentiating of embryonic stem cells towards a pancreatic fate as well as in vivo studies in basic pancreas development are presented and discussed.
17

Studies of Stroma Formation and Regulation in Human Pathological Conditions and in Experimental in vivo Models

Rodriguez, Alejandro January 2010 (has links)
Fibrosis is a sequel of chronic inflammation and is defined as an excessive deposition of collagen that ultimately leads to organ dysfunction. To date there are no effective treatments for fibrosis. The main cell type involved in collagen deposition and organization is the myofibroblast. In the first study we examined how myofibroblasts differentiate in human fibrotic conditions and in experimental animal models. Human tissues were stained with antibodies that recognize integrin receptors and in addition we also stained for α-SMA, a myofibroblast marker. We found a co-localization between these two markers in stromal cells and hypothesized that integrin α1 is important for the acquisition of the myofibroblast phenotype. To tests this hypothesis we used knockout animals for this integrin subunit. These animals showed a reduction of α-SMA positive fibroblasts, indicating that the α1 integrin subunit is required for proper myofibroblast differentiation. In the second study we used a neuroblastoma tumor model to study tumour growth when a drug targeting the synthesis of cellular NAD was administered. In treated animals an expansion of the nonvascular stroma was observed compared to controls. Normalization of the vasculature was observed in treated tumors together with a decrease in hypoxia. Moreover, this was followed by a decrease in stromal PDGF-B and VEGF expression, suggesting a deactivation of the stroma. In the third study the effects of over-expression of the two pro-fibrotic growth factors TGF-β and PDGF-B in skin was evaluated. We observed that both growth factors induced fibrosis. Over time, a decrease in blood vessel density was observed in both treatment groups. Both factors also stimulated an expansion of the connective tissue cell population originating from the microvascular pericyte, but the phenotype of these cells differed in the different treatments with regards to expression of markers. Furthermore, in tissue over-expressing PDGF-B but not TGF-β, the fibrotic process was partially reversible.
18

Microfluidic and Molecular Tools for Genetic Analyses

Johansson, Henrik January 2010 (has links)
Methods that enable interrogation of multiple genomic regions in parallel are very useful for efficient detection of genetic variation. Two different types of probes are described in this thesis that can be used for direct analysis or for sample preparation upstream of Next Generation Sequencing.  In addition to the development of molecular probing systems it also reports on the progress of two assay formats for biological experiments. The Selector probe enrich for genomic regions of interest by probe mediated specific circularization of target fragments. Amplification based enrichment of circles can be carried out using polymerase chain reaction, rolling-circle amplification or multiple displacement amplification. Enrichment of all exons in 28 genes known to be mutated in lung and/or colon cancer is demonstrated.  Selection and analysis by SOLiD Sequencing was performed on fresh frozen and formalin fixed paraffin embedded (FFPE) samples, and mutations previously detected by Sanger sequencing were detected.  The extractor probe is another probe variant that can be used for multiplex enrichment of DNA. It targets genomic fragments by using both ligation and sequence specific elongation for discrimination between on and off target sequences. A microfluidic platform fabricated by compact disc injection molding that can be used for biological assays is described.  Microchannel structures in thermoplastic material are coated with silicon dioxide by electron beam evaporation which facilitates closing of the structures by PDMS- glass bonding by ozone plasma. The platform’s utility for biological experiments is demonstrated by for detection of amplified single molecules (ASM), cell culturing and on-chip peristaltic pumping. The thesis also includes an exploratory study for the purpose of using a non-optical system for detection of ASM’s.  Optimizations were performed of the conditions needed in order to detect an increase in hydrodynamic size of magnetic particles, using a superconducting quantum interference device (SQUID), as they form complex with ASM’s.
19

Microarray Technology for Genotyping in Pharmacogenetics

Liljedahl, Ulrika January 2004 (has links)
The studies in this thesis describe the development of a microarray based minisequencing system and its application to highly parallel genotyping of single nucleotide polymorphisms. The technical developments included identification of a three-dimensional microarray surface coating with high binding capacity for oligonucleotides modified with amino groups as the most optimal one for the system. The system was also established for multiplexed, reproducible quantitative analysis of SNP alleles both on the level of DNA and RNA. The sensitivity of the system to distinguish SNP alleles present as a minority in a mixed sample was found to be 1-6%. The microarray based minisequencing system was applied in a pharmacogenetic study on antihypertensive drug response. A panel of 74 SNPs located in candidate genes related to blood pressure regulation were genotyped in DNA samples from hypertensive patients that had been treated with the antihypertensive drugs irbesartan or atenolol. Multiple regression analysis of the genotype data against the reduction in blood pressure identified genotype combinations of four to five SNPs that explain 44-56% of the reduction in blood pressure in the two treatment groups. The genotypes of two individual SNPs in the angiotensinogen (AGT) gene and a SNP in the low density lipoprotein receptor (LDLR) gene appeared to be associated to reduced blood pressure after treatment with atenolol, while a SNP in the apolipoprotein B (APOB) gene was associated to blood pressure reduction after irbesartan treatment. The genotype of one SNP in the adrenergic alpha-2A-receptor gene (ADRA2A) was related to the reduction in left ventricular mass following atenolol treatment while the genotypes of two SNPs, one in the APOB gene and one in the AGT gene were related to the reduction in left ventricular mass in the patients treated with irbesartan.
20

Proximity Ligation : Transforming protein analysis into nucleic acid detection through proximity-dependent ligation of DNA sequence tagged protein-binders

Fredriksson, Simon January 2002 (has links)
<p>A novel technology for protein detection, proximity ligation, has been developed along with improved methods for <i>in situ</i> synthesis of DNA microarrays. Proximity ligation enables a specific and quantitative transformation of proteins present in a sample into nucleic acid sequences. As pairs of so-called proximity probes bind the individual target protein molecules at distinct sites, these reagents are brought in close proximity. The probes consist of a protein specific binding part coupled to an oligonucleotide with either a free 3’- or 5’-end capable of hybridizing to a common connector oligonucleotide. When the probes are in proximity, promoted by target binding, then the DNA strands can be joined by enzymatic ligation. The nucleic acid sequence that is formed can then be amplified and quantitatively detected in a real-time monitored polymerase chain reaction. This convenient assay is simple to perform and allows highly sensitive protein detection. Parallel analysis of multiple proteins by DNA microarray technology is anticipated for proximity ligation and enabled by the information carrying ability of nucleic acids to define the individual proteins. Assays detecting cytokines using SELEX aptamers or antibodies, monoclonal and polyclonal, are presented in the thesis.</p><p>Microarrays synthesized <i>in situ</i> using photolithographic methods generate impure products due to damaged molecules and interrupted synthesis. Through a molecular inversion mechanism presented here, these impurities may be removed. At the end of synthesis, full-length oligonucleotides receive a functional group that can then be made to react with the solid support forming an arched structure. The 3’-ends of the oligonucleotides are then cleaved, removing the impurities from the support and allowing the liberated 3’-hydroxyl to prime polymerase extension reactions from the inverted oligonucleotides. The effect of having pure oligonucleotides probes compared to ones contaminated with shorter variants was investigated in allele specific hybridization reactions. Pure probes were shown to have greater ability to discriminate between matched and singly mismatched targets at optimal hybridization temperatures.</p>

Page generated in 0.0417 seconds