Spelling suggestions: "subject:"monoïde"" "subject:"conoïde""
1 |
Plateaux d'idempotents dans un monoïde : partie génératrice et associativité dans un groupoïdeEl-Kari, Yacoub 21 October 1972 (has links) (PDF)
.
|
2 |
Clones de constantes et de permutations et leur intervalle monoïdalFearnley, Anne January 2007 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
|
3 |
Clones de constantes et de permutations et leur intervalle monoïdalFearnley, Anne January 2007 (has links)
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
|
4 |
Propérades en Algèbre, Topologie, Géométrie et Physique MathématiqueVallette, Bruno 11 June 2009 (has links) (PDF)
Ce mémoire contient un résumé de mes travaux sur le thème des propérades et de leurs applications en algèbre, topologie, géométrie et physique mathématique.
|
5 |
Contributions à l'Algèbre, à l'Analyse et à la Combinatoire des Endomorphismes sur les Espaces de SériesPoinsot, Laurent 08 November 2011 (has links) (PDF)
Le dual topologique de l'espace des séries en un nombre quelconque, éventuellement infini, de variables non commutatives avec un corps topologique séparé de coefficients, pour la topologie produit, n'est autre que l'espace des polynômes. Il en résulte de façon immédiate que les endomorphismes continus sur les séries sont exactement les matrices infinies mais finies en ligne. Les matrices triangulaires infinies, puisque formant une algèbre de Fréchet, disposent quant à elles d'un calcul intégral et différentiel, que nous développons dans un cadre assez général, et qui permet d'établir une correspondance exponentielle-logarithme de type Lie. Nous déployons ces outils sur l'algèbre de Weyl (à deux générateurs) réalisée fidèlement comme une algèbre d'opérateurs agissant continûment sur l'espace des séries formelles (en une variable). Puis nous démontrons que chaque endomorphisme d'un espace vectoriel de dimension infinie dénombrable peut s'obtenir explicitement sous la forme de la somme d'une famille sommable en des opérateurs plus élémentaires, les opérateurs d'échelle (généralisation de l'algèbre de Weyl), précisant de la sorte le théorème de densité de Jacobson. Par dualité (topologique) un résultat similaire concernant les opérateurs continus sur un espace de combinaisons linéaires infinies tombent presque gratuitement. Par ailleurs nous développons la notion d'algèbre (contractée) large d'un monoïde à zéro (obtenue par complétion de l'algèbre contractée) qui nous permet de calculer de nouvelles formules d'inversion de Möbius ainsi que des séries de Hilbert.
|
6 |
Réécriture de diagrammes et de Sigma-diagrammesRannou, Pierre 21 October 2013 (has links)
Peaks andThe main subject of this thesis is diagram rewriting.This is a generalisation to dimension~$2$ of word rewriting (in dimension~$1$). In a first time, we give the first convergent diagrammatic presentation of the PRO of linear maps in arbitrary field. Then we study the convergent diagrammatic presentation of matrix of isometries of $RR^n$. We focus especially on a rule similar to the Yang-Baxter equation, described by a certain map $h$. We use the confluence of critical the parametric diagrams, To study the algebraic properties of $h$, Finally, we present the $Sigma$-diagrams, an alternative approach for calculation in bialgebras. We illustrate this approach with examples. The last two chapters have been already published: Diagram rewriting for orthogonal matrices: a study of critical peaks, avec Yves Lafont, Lecture Notes in Computer Science 5117, p. 232-245, 2008 Properties of co-operations: diagrammatic proofs, Mathematical Structures in Computer Science 22(6), p. 970-986, 2012. / The main subject of this thesis is diagram rewriting.This is a generalisation to dimension~$2$ of word rewriting (in dimension~$1$). In a first time, we give the first convergent diagrammatic presentation of the PRO of linear maps in arbitrary field. Then we study the convergent diagrammatic presentation of matrix of isometries of $RR^n$. We focus especially on a rule similar to the Yang-Baxter equation, described by a certain map $h$. We use the confluence of criticalthe parametric diagrams, To study the algebraic properties of $h$, Finally, we present the $Sigma$-diagrams, an alternative approach for calculation in bialgebras. We illustrate this approach with examples. The last two chapters have been already published: Diagram rewriting for orthogonal matrices: a study of critical peaks, avec Yves Lafont, Lecture Notes in Computer Science 5117, p. 232-245, 2008 Properties of co-operations: diagrammatic proofs, Mathematical Structures in Computer Science 22(6), p. 970-986, 2012.
|
7 |
Développements combinatoires autour des tableaux et des nombres eulériens / Combinatorial developments on tableaux and eulerian numbersChemli, Zakaria 31 March 2017 (has links)
Cette thèse se situe au carrefour de la combinatoire énumérative, algébrique et bijective. Elle se consacre d’une part à traduire des problèmes algébriques en des problèmes combinatoires, et inversement, utilise le formalisme algébrique pour traiter des questions combinatoires.Après un rappel des notions classiques de combinatoire et de structures algébriques, nous abordons l’étude des tableaux de dominos décalés, qui sont des objets combinatoires définis dans le but de mieux comprendre la combinatoire des fonctions symétriques P et Q de Schur. Nous donnons la définition de ces tableaux et nous démontrons qu'ils sont en bijection avec les paires de tableaux de Young décalés. Cette bijection nous permet de voir ces objets comme des éléments du super monoïde plaxique décalé, qui est l'analogue décalé du super monoïde plaxique de Carré et Leclerc. Nous montrons aussi que ces tableaux décrivent un produit de deux fonctions P de Schur et en prenant un autre type de tableaux de dominos décalés, nous décrivons un produit de deux fonctions Q de Schur. Nous proposons aussi deux algorithmes d'insertion pour les tableaux de dominos décalés, analogues aux algorithmes d'insertion mixte et d'insertion gauche-droit de Haiman. Toujours dans le domaine de la combinatoire bijective, nous nous intéressons dans la deuxième partie de notre travail à des bijections en lien avec des statistiques sur les permutations et les nombres eulériens.Dans cette deuxième partie de thèse, nous introduisons l'unimodalité des suites finies associées aux différentes directions dans le triangle eulérien. Nous donnons dans un premier temps une interprétation combinatoire ainsi que la relation de récurrence des suites associées à la direction (1,t) dans le triangle eulérien, où t≥1. Ces suites sont les coefficients de polynômes appelés les polynômes eulériens avec succession d'ordre t, qui généralisent les polynômes eulériens. Nous démontrons par une bijection entre les permutations et des chemins nord-est étiquetés que ces suites sont log-concaves et donc unimodales. Puis nous prouvons que les suites associées aux directions (r,q), où r est un entier positif et q est un entier, tel que r+q≥0, sont aussi log-concaves et donc unimodales / This thesis is at the crossroads of enumerative, algebraic and bijective combinatorics. It studies some algebraic problems from a combinatorial point of view, and conversely, uses algebraic formalism to deal with combinatorial questions.After a reminder about classical notions of combinatoics and algebraic structures, We introduce new combinatorial objects called the shifted domino tableaux, these objects can be seen as a shifted analog of domino tableaux or as an extension of shifted Young tableaux. We prove that these objects are in bijection with pairs of shifted Young tableaux. This bijection shows that shifted domino tableaux can be seen as elements of the super shifted plactic monoid, which is the shifted analog of the super plactic monoid. We also show that the sum over all shifted domino tableaux of a fixed shape describe a product of two P-Schur functions, and by taking a different kind of shifted domino tableaux we describe a product of two Q-Schur functions. We also propose two insertion algorithms for shifted domino tablaux, analogous to Haiman's left-right and mixed insertion algorithms. Still in the field of bijective combinatorics, we are interested in the second part of our work with bijections related to statistics on permutations and Eulerian numbers.In this second part of this thesis, we introduce the unimodality of finite sequences associated to different directions in the Eulerian triangle. We first give a combinatorial interpretations as well as recurrence relations of sequences associated with the direction (1, t) in the Eulerian triangle, where t≥1. These sequences are the coefficients of polynomials called the t-successive eulerian polynomials, which generalize the eulerian polynomials. We prove using a bijection between premutations and north-east lattice paths that those sequences are unomodal. Then we prove that the sequences associated with the directions (r, q), where r is a positive integer and q is an integer such that r + q ≥ 0, are also log-concave and therefore unimodal
|
Page generated in 0.0289 seconds