Spelling suggestions: "subject:"monolignol"" "subject:"monolignols""
1 |
Transcriptômica da via de biossíntese dos monolignóis ao longo do desenvolvimento dos entrenós de cana-de-açúcar (Saccharum spp.) / Transcriptomics of the monolignol biosynthesis pathway along sugarcane internodes development (Saccharum spp.)Silva, Iaquine Santos da 01 April 2019 (has links)
As gramíneas são o mais importante grupo de plantas para em todo o mundo. Inúmeras são usadas para a alimentação dos animais, além de serem utilizadas para a produção de biocombustíveis, contribuindo para a redução do consumo de combustíveis fósseis e consequentemente da poluição ambiental. A biomassa vegetal é constituída basicamente por celulose, hemicelulose e lignina. Estudos na área de bioquímica e genética tem demonstrado a lignina como um dos principais compostos responsáveis pela recalcitrância da biomassa, sendo a resistência à digestão enzimática uma importante limitação do processo de produção de bioetanol. A lignina é um polímero vegetal resultantes da polimerização desidrogenativa de três monômeros de fenilpropanóides primários, os álcoois p-coumarilico (H), coniferilico (G) e sinapilico (S). A via metabólica dos fenilpropanóides envolve a participação de 11 enzimas, nas gramíneas, tais como PAL, C4H, 4CL, C3H, F5H, CCoAOMT, CSE, COMT, HCT, CCR e CAD. Até o momento, 28 genes de cana-de-açúcar foram identificados no SUCEST e explorados para identificar os possíveis bona fide. No entanto, com a disponibilização de bancos transcriptômicos (RNASeq) e ferramentas avançadas de bioinformática, o nosso grupo de pesquisa expandiu para 37 genes após o processo de identificação, anotação e classificação pelas análises filogenéticas. Diante disso, a presente proposta teve por objetivo realizar a análise de expressão destes transcritos anotados em uma variedade de cana-de-açúcar com a composição química da parede celular caracterizada. Para identificar quais genes estão envolvidos nesta via, o presente trabalho propôs correlacionar o perfil de expressão com os quatro estágios de desenvolvimento do entrenó, separando córtex e medula, os quais estão associados aos estágios de lignificação em maior e menor grau, respectivamente. Dentre as análises realizadas, 34 transcritos tiveram os primers padronizados , 26 foram expressos no colmo nas condições testadas, sendo 7 genes adicionais aos previamente descritos na literatura. Baseado nas análises de expressão gênica, PAL1.1/1.2, COMT1, CAD2/5/8, 4CL2, F5H1, CCoAMOT1.2/2.1 e CCR1 foram apontados como possíveis candidatos principais na via de biossíntese da lignina. / Sugarcane (Saccharum spp.) is a grass of great importance for the sustainable technological and agroindustrial development of Brazil. The cell wall of the grasses is basically composed of cellulose, hemicellulose, lignin and hydroxycinnamic acids. The study of the chemical composition of the cell wall of different sugarcane hybrids revealed that low lignin content, in particular for H89 (~ 16.8%), contribute to the low recalcitrance of the biomass. These studies obtained greater information when the regions of rind and pith of H89 were dissected, which present, respectively, 21.7% and 13.9% of total lignin. Lignin is a plant polymer resulting from the dehydrogenative polymerization of three primary phenylpropanoic monomers, the p-coumaril (H), coniferyl (G) and synapylic (S) alcohols. The metabolic pathway of the phenylpropanoids involves the participation of several enzymes, totalizing in the grasses 11 sets, such as PAL, C4H, 4CL, C3H, F5H, CCoAOMT, CSE, COMT, HCT, CCR and CAD. So far, 28 unigenes of sugarcane have been identified in SUCEST and explored to identify the possible bona fide. Recently, based on bioinformatics, phylogenetic and transcriptomic (RNA-Seq) analyzes of sugarcane and related grasses, our research group identified 37 transcripts possibly involved in monolignol biosynthesis. In the presence of detailed descriptions of the composition of lignin in H89 and of the large number of genes identified, the presente proposal aimed to perform the analysis of the expression of these transcripts annotated in H89. In order to amplify and reinforce which genes are involved in the monolignol pathway, the present work proposed to correlate the expression profile with four stages of the development of the enternode, exploring the regions of rind and pith. Among the analyzes performed, 34 genes were identified, 26 genes were expressed, being 7 additional genes to those previously described in the literature. In this context, PAL1.1 / 1.2, COMT1, CAD2 / 5/8, 4CL2, F5H1, CCoAMOT1.2 / 2.1 and CCR1 were identified as potential candidates in the lignin biosynthesis pathway.
|
2 |
4-hydroxycinnamoyl-CoA hydratase/lyase from Pseudomonas fluorescens AN103 : characterisation and effects of expression in transformed root cultures of Datura stramoniumMitra, Adinpunya January 1999 (has links)
No description available.
|
3 |
Studies of Sustainable Polymers: Novel Lignins to Reprocessable PolymersLiu, Tianyi 02 June 2022 (has links)
This dissertation includes two research topics. This first topic focuses on fundamental studies of monolignols and lignin, including polymerization and degradation. The second part reports a polymeric material that was crosslinked but can be reprocessed.
In order to understand lignin from a molecular level and promote biopolymer conversion, we investigated the dehydrogenative copolymerization and degradation of two monolignols: caffeyl (C) alcohol and p-coumaryl (H) alcohol. The copolymerization and degradation were monitored by a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) was applied to investigate the topologies of the copolymer and degraded films. Horseradish peroxidase (HRP) was used as the enzyme for the dehydrogenative polymerization of monolignols and chelator-mediated Fenton chemistry was used to degrade the lignin. With constant monolignol concentration, we found that as the fraction of H in the polymerization feed increased, the amount of lignin formed increased, and the films became more rigid. For the degradation process of the resultant lignins, the presence of more C-monolignol during polymerization facilitated greater degradation. This work demonstrated the chemical factors that influenced the physical properties of lignin and lignin degradation, which could impact biofuel production.
We further investigated the surface-initiated dehydrogenative polymerization of a new monolignol 5-hydroxyconiferyl (5H) alcohol using a QCM-D. HRP was immobilized on gold sensors. Various experimental conditions were studied. The dehydrogenative polymerization of 5H-monolignol was influenced by the concentration of monolignols and temperature, but was not affected by the hydrogen peroxide concentration, which was different from other monolignols. We also compared the polymerization kinetics of 5H-monolignol and the topology of the resulting lignin thin films with other monolignols. Furthermore, we utilized enzymatic and chemical degradation methods to treat the 5H-lignin. The 5H-lignin film was degraded thoroughly via a chelator-mediated Fenton reaction. This study provided a comprehensive understanding of 5H-monolignol polymerization and degradation and could be used as a reference for the exploration of the applications of the 5H-monolignol.
In this dissertation, a separate study involved a vitrimer. It was a crosslinked polymer, but could be reprocessed and reshaped. The new vitrimer was based on poly (methyl methacrylate-co-hydroxymethyl methacrylate). Aromatic disulfides that underwent a dynamic exchange reaction were incorporated as crosslinkers. The structure of the material was identified by proton nuclear magnetic resonance spectroscopy (1H NMR) and Fourier transform infrared spectroscopy (FTIR). Thermal properties and mechanical properties were studied through thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and Instron tests. Furthermore, the chemical resistance was explored. Notably, that new material exhibited comparable mechanical performance for three cycles when reprocessed via a hot press to reprocess. / Doctor of Philosophy / Lignin is a complex phenylpropanoid polymer and is one of the most abundant biopolymers in nature. Conversion of lignin into biofuels or other fine chemicals has drawn significant attention in recent years. Understanding molecular details of lignin formation and degradation is of fundamental importance for the biorefinery. Although a number of studies have improved our knowledge about lignin, many important aspects remain unknown.
Lignin arises from dehydrogenative polymerization of three types of monolignols, named p-coumaryl (H), coniferyl (G), and sinapyl (S) alcohols. Recently, a new monolignol, caffeyl (C) alcohol, has been found. In this work, the surface-initiated copolymerization of C-monolignol and H-monolignol was conducted through an in vitro synthesis. Furthermore, chelator-mediated Fenton reactions were applied to degrade the resulting lignin. The effect of C-lignin incorporation on degradation was studied. It was found that, when more C-lignin was incorporated, the percentage of degradation was larger. These findings are likely to guide the conversion of lignocellulosic biomass into value-added products.
A new monolignol, 5-hydroxyconiferyl (5H) alcohol, was investigated in this dissertation. The surface-initiated dehydrogenative polymerization of 5H was conducted under various experimental conditions, including different temperature, monomer concentration, and hydrogen peroxide concentration. Furthermore, degradation by enzymatic and non-enzymatic methods were studied. It was found that the 5H-lignin was recalcitrant to enzyme, but can be degraded by a non-enzymatic procedure. The synthesis and degradation were monitored by a quartz crystal microbalance with dissipation (QCM-D), which is a label-free method and can provide real-time data.
Thermosets are the materials that are chosen for many applications due to their structural stability and mechanical properties. However, due to their permanent crosslinkages, they cannot be reprocessed or recycled. In this dissertation, a new crosslinked polymer material called a vitrimer was reported. The material was developed based upon poly (methyl methacrylate) (PMMA) and aromatic disulfide linkages, which are exchangeable chemical bonds. The exchange reaction occurs very quickly at elevated temperature. As a result, the material can be easily reprocessed and also exhibited chemical stability and mechanical properties similar to conventional thermosets.
|
4 |
Phänotypisierung von Resistenzquellen und Charakterisierung von Resistenzfaktoren in Brassica-Arten gegenüber Sclerotinia sclerotiorum, dem Erreger der Weißstängeligkeit. / Phenotyping of resistance sources and characterisation of resistance factors in Brassica species to Sclerotinia sclerotiorum, the causal pathogen of the white mold disease.Höch, Kerstin 25 April 2016 (has links)
No description available.
|
5 |
Functional characterization of UGT72s glycosyltransferases in poplarSpeeckaert, Nathanaël 07 June 2021 (has links) (PDF)
Pour s’adapter à leur environnement, les plantes ont acquis la capacité de produire une grande quantité de métabolites spécialisés à partir d’un nombre limité de structures de base. Parmi les modifications apportées à ces structures de base, la réaction de glycosylation permet d’augmenter la solubilité du composé, de réduire sa toxicité et de contribuer à une meilleure stabilité de certaines molécules ayant pour conséquence la modification de leur transport et/ou de leur stockage. Les UDP-glycosyltransférases (UGT) forment une vaste famille de glycosyltransférases chez les plantes. Elles regroupent des enzymes glycosylant principalement des hormones et des phénylpropanoides en utilisant l’UDP-sucre comme donneur de sucre. L’objectif de ce travail consiste à contribuer à la caractérisation fonctionnelle de la famille des UGT72 chez le peuplier afin d’identifier le rôle de ses membres dans les processus développementaux liés aux arbres et dans leurs réponses au stress. Plusieurs membres de cette famille ont déjà été caractérisés chez d’autres espèces comme A. thaliana, M. truncatula et C. sinensis, mettant en évidence la capacité de certaines UGT72s à glycosyler les monolignols, une implication dans le processus de lignification, un rôle dans des processus de défense contre les pathogènes ou encore une fonction de détoxification de certains polluants. Parmi les 8 UGT72s identifiées chez le peuplier, nous avons montré qu’in vitro UGT72AZ2 glycosyle l’acide férulique et l’acide sinapique, UGT72B37 le p-coumaraldéhyde, le coniféraldéhyde, le sinapaldéhyde, le coniferyl alcool et le sinapyl alcool, UGT72B39 le coniféryl alcool et UGT72A2 la naringénine. Tous les membres de la famille UGT72 sont exprimés dans les tissus vasculaires, suggérant un rôle dans le développement vasculaire. La surexpression de UGT72AZ1 ou UGT72AZ2 provoque l’accumulation de glucosides de monolignols (respectivement coniférine et syringine ou coniférine seulement), sans toutefois affecter la quantité totale de lignine. Concernant la localisation subcellulaire, excepté pour UGT72A2, les UGT72s du peuplier sont localisées dans le réticulum endoplasmique et le noyau, suggérant respectivement, un rôle dans la régulation de la voie des phénylpropanoides et dans la maintenance de l’ADN. UGT72A2 se démarque des autres membres de cette famille, car elle est localisée dans les chloroplastes et dans des vésicules associées aux chloroplastes, suggérant un rôle dans la régulation des phénylpropanoides dans le chloroplaste et/ou dans la maintenance du chloroplaste. En appui de ces hypothèses, nous avons constaté que la photosynthèse est affectée dans les lignées sous-exprimant UGT72A2, provoquant un jaunissement des feuilles. De plus, les feuilles de lignées sous-exprimant UGT72A2 développent un stress oxydatif associé à une réduction de l’accumulation des flavonoïdes et de l’activité des enzymes antioxydantes, suggérant un rôle de UGT72A2 dans l’homéostasie des formes réactives de l’oxygène (ROS). / In order to adapt to their environment, plants have developed the capacity to produce a diversified range of specialized metabolites by modifying a core set of molecules. Among those modifications, glycosylation allows to increase the solubility, to reduce the toxicity and to stabilize compounds in order to modify their transport and/or allow their storage. The UDP-glycosyltransferases (UGT) forming the largest glycosyltransferase superfamily in plants, combine enzymes which glycosylate mainly hormones and phenylpropanoids by using UDP-sugar as sugar donor. The purpose of this dissertation is to contribute to the functional characterization of the UGT72 family in poplar to unravel the role of its members in tree developmental processes and in stress response. Members of this family already characterized in other species (e.g. Arabidopsis thaliana, Medicago truncatula and Camellia sinensis) have been found to glycosylate monolignols and some of them have been associated with lignification, defence against pathogens and detoxification of pollutants. Among the 8 UGT72s identified in poplar, we have shown that UGT72AZ2 glycosylates in vitro ferulic acid and sinapic acid, UGT72B37 p-coumaraldehyde, coniferaldehyde, sinapaldehyde, coniferyl alcohol and sinapyl alcohol, UGT72B39 coniferyl alcohol and UGT72A2 naringenin. All the UGT72 members are expressed in vascular tissues suggesting a role in vascular development. The overexpression of UGT72AZ1 or UGT72AZ2 in poplar triggers the accumulation of monolignol glucosides (both coniferin and syringin or only coniferin, respectively) but has no impact on lignin content. With respect to the subcellular localization, except for UGT72A2, poplar UGT72s are localized in the endoplasmic reticulum and in the nucleus suggesting a possible role in the phenylpropanoid pathway regulation and in DNA maintenance, respectively. UGT72A2 stands out from the other poplar UGT72s by being localized in the chloroplast and chloroplast associated bodies, suggesting a role in the phenylpropanoid regulation in chloroplasts and/or in chloroplast maintenance. Moreover, supporting these hypotheses, photosynthesis was affected in lines downregulated for UGT72A2, as shown by a leaf yellowing phenotype and an oxidative stress in these lines as compared to the wild type. The flavonoid biosynthesis and the activity of enzymes involved into the reactive oxygen species (ROS) scavenging seem to be reduced by the downregulation of UGT72A2 suggesting a role of this UGT in the ROS homeostasis. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
6 |
Etude de la voie de biosynthese des monolignols chez brachypodium distachyon / Identification of genes involved in the biosynthesis of monolignols in Brachypodium distachyonBouvier d'yvoire, Madeleine 19 December 2011 (has links)
La récente définition de Brachypodium distachyon comme modèle des graminées en fait un organisme de choix pour l’étude de leur paroi cellulaire, en particulier dans le cadre de leur utilisation comme matière première renouvelable pour le bioéthanol de seconde génération. Les lignines, dont les trois unités (H, G et S) proviennent de la polymérisation des monolignols, sont associées aux acides hydroxycinnamiques dans la paroi des céréales et représentent l’obstacle majeur à l’exploitation industrielle de la biomasse lignocellulosique. L’acquisition de connaissances sur les mécanismes dirigeant leur mise en place et leur organisation permettrait d’identifier des facteurs modulant les rendements de production qui y sont associés. Quatre familles de gènes ont été étudiées et l’implication dans la voie de biosynthèse des monolignols de trois gènes a été montrée : BdF5H2 possède une activité férulate-5-hydroxylase permettant la synthèse des précurseurs des unités S des lignines, BdCOMT3 est l’isoforme principale des acide cafféique O-Méthyltransférases et sa perte partielle de fonction cause une diminution de la quantité de lignine, la modification du rapport S/G et une baisse de quantité d’acide p-coumarique dans deux lignées mutantes indépendantes. Enfin, BdCAD1 est l’isoforme principale des alcools cinnamylique déshydrogénases : sa perte de fonction dans deux lignées indépendantes cause la diminution de la quantité globale de lignine et d’acide p-coumarique, une baisse du rapport S/G ainsi que l’accumulation de sinapaldéhyde. Par ailleurs ces deux lignées présentent des rendements de saccharification augmentés de plus d’un quart par rapport au sauvage. / Brachypodium distachyon was recently adopted as an experimental model for grass species. As such, it is used to study grass cell wall, in particular in the context of their use as renewable feedstock for the production of second generation bioethanol. Lignins are polymers of three main units (H, G and S) originating from the polymerization of monolignols, and are linked to hydroxycinnamic acids in grasses. They constitute the main bottleneck to industrial processes targeting lignocellulosic biomass and improving the understanding of the mechanisms directing their structure and deposition could lead to the identification of the factors modulating associated production yields. Four gene families were studied and the involvement of three genes in the monolignols biosynthetic pathway was shown: BdF5H2 displays a ferulate-5-hydroxylase activity enabling the synthesis of the S lignin units, BdCOMT3 is the main caffeic acid O-methyltransferase and its partial loss of function in two independent mutant lines leads to the reduction of lignin content, the modification of the S/G units ratio and a decrease in p-coumaric acid accumulation. BdCAD1 is the main cinnamyl alcohol dehydrogenase isoform: its loss of function in two independent mutant lines results in a decrease in lignin content and of the S/G ratio and the accumulation of sinapaldehyde. Moreover, these two lines display significatively increased saccharification yields.
|
7 |
Phenolic 3-hydroxylases in land plants: biochemical diversity and molecular evolutionAlber, Annette Veronika 02 December 2016 (has links)
Plants produce a rich variety of natural products to face environmental constraints. Enzymes of the cytochrome P450 CYP98 family are key actors in the production of phenolic bioactive compounds. They hydroxylate phenolic esters for lignin biosynthesis in angiosperms, but also produce various other bioactive phenolics. We characterized CYP98s from a moss, a lycopod, a fern, a conifer, a basal angiosperm, a monocot and from two eudicots. We found that substrate preference of the enzymes has changed during evolution of land plants with typical lignin-related activities only appearing in angiosperms, suggesting that ferns, similar to lycopods, produce lignin through an alternative route. A moss CYP98 knock-out mutant revealed coumaroyl-threonate as CYP98 substrate in vivo and showed a severe phenotype. Multiple CYP98s per species exist only in the angiosperms, where we generally found one isoform presumably involved in the biosynthesis of monolignols, and additional isoforms, resulting from independent duplications, with a broad range of functions in vitro / Graduate / 2017-08-31
|
8 |
Etude de la voie de biosynthese des monolignols chez brachypodium distachyonBouvier d'yvoire, Madeleine 19 December 2011 (has links) (PDF)
La récente définition de Brachypodium distachyon comme modèle des graminées en fait un organisme de choix pour l'étude de leur paroi cellulaire, en particulier dans le cadre de leur utilisation comme matière première renouvelable pour le bioéthanol de seconde génération. Les lignines, dont les trois unités (H, G et S) proviennent de la polymérisation des monolignols, sont associées aux acides hydroxycinnamiques dans la paroi des céréales et représentent l'obstacle majeur à l'exploitation industrielle de la biomasse lignocellulosique. L'acquisition de connaissances sur les mécanismes dirigeant leur mise en place et leur organisation permettrait d'identifier des facteurs modulant les rendements de production qui y sont associés. Quatre familles de gènes ont été étudiées et l'implication dans la voie de biosynthèse des monolignols de trois gènes a été montrée : BdF5H2 possède une activité férulate-5-hydroxylase permettant la synthèse des précurseurs des unités S des lignines, BdCOMT3 est l'isoforme principale des acide cafféique O-Méthyltransférases et sa perte partielle de fonction cause une diminution de la quantité de lignine, la modification du rapport S/G et une baisse de quantité d'acide p-coumarique dans deux lignées mutantes indépendantes. Enfin, BdCAD1 est l'isoforme principale des alcools cinnamylique déshydrogénases : sa perte de fonction dans deux lignées indépendantes cause la diminution de la quantité globale de lignine et d'acide p-coumarique, une baisse du rapport S/G ainsi que l'accumulation de sinapaldéhyde. Par ailleurs ces deux lignées présentent des rendements de saccharification augmentés de plus d'un quart par rapport au sauvage.
|
Page generated in 0.0481 seconds