Spelling suggestions: "subject:"horsbrott functions"" "subject:"korsakott functions""
1 |
Um invariante para sistemas com integral primeira Morse-Bott / A invariant for systems with a Morse-Bott first integralSarmiento, Ingrid Sofia Meza 16 August 2011 (has links)
Nesta dissertação são investigados os sistemas diferenciais com integral primeira do tipo Morse-Bott definidos em superfícies compactas e orientáveis. A cada sistema, nas condições acima descritas, associa-se um grafo de modo que a correspondência entre os grafos e as classes de equivalência topologica orbital dos campos investigados seja bijetiva. Portanto, apresenta-se um invariante completo, chamado aqui de grafo de Bott, para essa classe de sistemas. Essa abordagem surgiu como uma iniciativa de generalizar o estudo realizado para sistemas Hamiltonianos com um grau de liberdade com integral primeira do tipo Morse definidos em superfícies 2-dimensionais compactas, onde os conceitos de átomos e fluxos gradiente foram aplicados por A.V. Bolsinov em [4] / In this dissertation are studied differential systems with a Morse-Bott first integral defined on compact orientable surfaces. For each system, under the conditions described above, is associated a graph so that the correspondence between graphs and the orbital topological equivalence classes of the systems are bijective. Therefore, we present a complete invariant, called here Bott graph for this class of systems. This approach has emerged as an initiative to generalize the study to systems Hamiltonian with one degree of freedom having a Morse first integral in 2-dimensional compact surfaces, where the concepts of atoms and gradient flows were applied by A.V. Bolsinov in [4]
|
2 |
A topologia de folheações e sistemas integráveis Morse-Bott em superfícies / The topology of foliations and integrable Morse-Bott systems on surfacesSarmiento, Ingrid Sofia Meza 23 July 2015 (has links)
Nesta tese estudamos os sistemas integráveis definidos em superfícies compactas possuindo uma integral primeira que é uma função Morse-Bott a valores em R. Estes sistemas são aqui chamados de sistemas integráveis Morse-Bott. Classificamos as curvas fechadas e oitos associados a pontos de selas imersos em superfícies compactas. Essa classificação é aplicada ao estudo das folheações Morse-Bott em superfícies e nos permite definir um invariante topológico completo para a classificação topológica global destas folheações. Como uma aplicação desse estudo obtemos a classificação dos sistemas Morse-Bott assim como a classificação topológica das funções Morse-Bott em superfícies compactas e orientáveis. Demonstramos ainda um teorema da realização baseado em duas transformações e numa folheação geradora. Para o caso das funções Morse-Bott também obtivemos um teorema de realização. Finalmente, investigamos a generalização de alguns dos resultados anteriores para sistemas definidos em superfícies não orientáveis. / In this thesis we study integrable systems on compact surfaces with a first integral as a Morse-Bott function with target R. These systems are called here integrable Morse-Bott systems. Initially we present the classification of closed curves and eights associated to saddle points on compact surfaces. This classification is applied to the study of Morse- Bott foliations on surfaces allowing us to define a complete topological invariant for the global topological classification of these foliations. Then as an application of this study we obtain the classification of integrable Morse-Bott systems as well as the topological classification of Morse-Bott functions on compact and orientable surfaces. We also prove a realization theorem based on two transformation and a generating foliation (the foliation on the sphere with two centers). In the case of Morse-Bott functions we also obtain a realization theorem. Finally we investigate generalizations of previous results for systems defined on non-orientable surfaces.
|
3 |
A topologia de folheações e sistemas integráveis Morse-Bott em superfícies / The topology of foliations and integrable Morse-Bott systems on surfacesIngrid Sofia Meza Sarmiento 23 July 2015 (has links)
Nesta tese estudamos os sistemas integráveis definidos em superfícies compactas possuindo uma integral primeira que é uma função Morse-Bott a valores em R. Estes sistemas são aqui chamados de sistemas integráveis Morse-Bott. Classificamos as curvas fechadas e oitos associados a pontos de selas imersos em superfícies compactas. Essa classificação é aplicada ao estudo das folheações Morse-Bott em superfícies e nos permite definir um invariante topológico completo para a classificação topológica global destas folheações. Como uma aplicação desse estudo obtemos a classificação dos sistemas Morse-Bott assim como a classificação topológica das funções Morse-Bott em superfícies compactas e orientáveis. Demonstramos ainda um teorema da realização baseado em duas transformações e numa folheação geradora. Para o caso das funções Morse-Bott também obtivemos um teorema de realização. Finalmente, investigamos a generalização de alguns dos resultados anteriores para sistemas definidos em superfícies não orientáveis. / In this thesis we study integrable systems on compact surfaces with a first integral as a Morse-Bott function with target R. These systems are called here integrable Morse-Bott systems. Initially we present the classification of closed curves and eights associated to saddle points on compact surfaces. This classification is applied to the study of Morse- Bott foliations on surfaces allowing us to define a complete topological invariant for the global topological classification of these foliations. Then as an application of this study we obtain the classification of integrable Morse-Bott systems as well as the topological classification of Morse-Bott functions on compact and orientable surfaces. We also prove a realization theorem based on two transformation and a generating foliation (the foliation on the sphere with two centers). In the case of Morse-Bott functions we also obtain a realization theorem. Finally we investigate generalizations of previous results for systems defined on non-orientable surfaces.
|
4 |
Um invariante para sistemas com integral primeira Morse-Bott / A invariant for systems with a Morse-Bott first integralIngrid Sofia Meza Sarmiento 16 August 2011 (has links)
Nesta dissertação são investigados os sistemas diferenciais com integral primeira do tipo Morse-Bott definidos em superfícies compactas e orientáveis. A cada sistema, nas condições acima descritas, associa-se um grafo de modo que a correspondência entre os grafos e as classes de equivalência topologica orbital dos campos investigados seja bijetiva. Portanto, apresenta-se um invariante completo, chamado aqui de grafo de Bott, para essa classe de sistemas. Essa abordagem surgiu como uma iniciativa de generalizar o estudo realizado para sistemas Hamiltonianos com um grau de liberdade com integral primeira do tipo Morse definidos em superfícies 2-dimensionais compactas, onde os conceitos de átomos e fluxos gradiente foram aplicados por A.V. Bolsinov em [4] / In this dissertation are studied differential systems with a Morse-Bott first integral defined on compact orientable surfaces. For each system, under the conditions described above, is associated a graph so that the correspondence between graphs and the orbital topological equivalence classes of the systems are bijective. Therefore, we present a complete invariant, called here Bott graph for this class of systems. This approach has emerged as an initiative to generalize the study to systems Hamiltonian with one degree of freedom having a Morse first integral in 2-dimensional compact surfaces, where the concepts of atoms and gradient flows were applied by A.V. Bolsinov in [4]
|
5 |
Dynamical spectral sequences for Morse-Novikov and Morse-Bott complexes / Sequências espectrais dinâmicas para complexos de Morse-Novikov e Morse-BottLima, Dahisy Valadão de Souza, 1986- 25 August 2018 (has links)
Orientador: Ketty Abaroa de Rezende / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T10:15:50Z (GMT). No. of bitstreams: 1
Lima_DahisyValadaodeSouza_D.pdf: 22146296 bytes, checksum: c88725de657b032422b9e4614ccd91a9 (MD5)
Previous issue date: 2014 / Resumo: O tema principal desta tese é o estudo de fluxos gradientes associados a campos vetoriais $-\nabla f$ em variedades fechadas, onde $f$ é uma função do tipo Morse, Morse circular e Morse-Bott. Para obter informações dinâmicas em cada caso, utilizamos ferramentas algébricas e topológicas, tais como sequências espectrais e matrizes de conexão. No contexto de Morse, consideramos um complexo de cadeias $(C,\Delta)$ gerado pelos pontos críticos de $f$ onde $\Delta$ conta (com sinal) o número de linhas do fluxo entre dois pontos críticos consecutivos. Uma análise via sequências espectrais $(E^{r},d^{r})$ é feita para se obter resultados de continuação global em superfícies. Nós relacionamos as diferenciais da $r$-ésima página de $(E^{r},d^{r})$ com cancelamentos dinâmicos entre pontos críticos. No caso de função de Morse circular $f:M \rightarrow S^{1}$, o método da varredura para um complexo de Novikov $(\mathcal{N},\Delta)$ associado $f$ e gerado pelos pontos críticos de $f$ é definido sobre o anel $\mathbb{Z}((t))$. Este método produz a cada etapa matrizes de Novikov. Provamos que a matriz final produzida pelo método da varredura tem entradas polinomiais, o que é surpreendente, já que as matrizes intermediárias podem ter séries infinitas como entradas. Apresentamos resultados que mostram que os módulos e diferenciais de uma sequência espectral associada a $(\mathcal{N},\Delta)$ podem ser recuperados através do método da varredura. Para fluxos gradientes associados a funções de Morse-Bott, as singularidades formam variedades críticas. Usamos a teoria do índice de Conley para obter uma caracterização do conjunto de matrizes de conexão para fluxos Morse-Bott. Obtemos resultados sobre o efeito no conjunto de matrizes de conexão causado por mudanças na ordem parcial e na decomposição de Morse de um conjunto invariante isolado / Abstract: The main theme in this thesis is the study of gradient flows associated to a vector field $-\nabla f$ on closed manifolds, where $f$ is either a Morse function, a circle-valued Morse function or a Morse-Bott function. In order to obtain dynamical information, we make use of algebraic and topological tools such as spectral sequences and connection matrices. In the Morse context, consider a chain complex $(C,\Delta)$ generated by the critical points of $f$, where $\Delta$ counts the number of flow lines between consecutive critical points with signs. A spectral sequence $(E^{r},d^{r})$ analysis is used to obtain results on global continuation of flows on surfaces. A link is established between the differentials on the $r$-th page of $(E^{r},d^{r})$ and cancellation of critical points. In the circle-valued Morse case $f:M \rightarrow S^{1}$, a sweeping algorithm for the Novikov chain complex $(\mathcal{N},\Delta)$ associated to $f$ and generated by the critical points of $f$ is defined over the ring $\mathbb{Z}((t))$. This algorithm produces at each stage Novikov matrices. We prove that the last Novikov matrix has polynomial entries which is quite surprising since the matrices in the intermediary stages may have infinite series entries. We also present results showing that the modules and differentials of the spectral sequence associated to $(\mathcal{N},\Delta)$ can be retrieved through the sweeping algorithm. For gradient flows associated to Morse-Bott functions, the singularities form critical manifolds. We use the Conley index theory for the critical manifolds in order to characterize the set of connection matrices for Morse-Bott flows. Results are obtained on the effects on the set of connection matrices caused by a change in the partial ordering and Morse decomposition of isolated invariant sets / Doutorado / Matematica / Doutora em Matemática
|
Page generated in 0.0828 seconds