Spelling suggestions: "subject:"count good"" "subject:"count food""
11 |
Seeing the Forest for the Roads: Auto-Tourism and Wilderness Preservation in Mount Hood National Forest, 1913-64Rose, Taylor Elliott 28 November 2016 (has links)
Between 1913 and 1964, automobile roads appeared throughout the Cascade Mountains around Mount Hood, just east of Portland, Oregon. From elaborate scenic highways to primitive dirt trails, each had its own story. Many of them are gone today, decommissioned and decomposing with the rotting understory soil of the forest. However, some remain as the most utilized spaces in Mount Hood National Forest, one of the most popular public land units for recreation in the country, owned and managed by the United States Forest Service. "Seeing the Forest for the Roads" uncovers the history of why roads were built, who planned them, and how they were used. At the same time, it seeks to answer the question, how do roads shape the way that people view wild nature? As places that are simultaneously easily accessible and "untrammeled," wilderness has much to do with roads. But it has even more to do with the people that envisioned, constructed, and used the roads. The story that follows is divided into four sections, from the Progressive Era, through the Roaring Twenties, New Deal years, and into the mid-twentieth century. It concludes with the Wilderness Act of 1964, a profound, important statement about the relationship between technology, nature, and human beings, which singled out roads as the most visible, damaging threat to the existence of wilderness as modern Americans know it. I argue that in order to understand wilderness as both a legal term and a social construct, scholars must look at the roads themselves, particularly from a local, on-the-ground perspective. In the end, what results is a more nuanced understanding of the twentieth-century history of technology and nature, as well as the social, cultural, and intellectual context that produced both sides of the same coin in wilderness.
|
12 |
Spatial and morphological change of Eliot Glacier, Mount Hood, OregonJackson, Keith Michael 01 January 2007 (has links)
Eliot Glacier is a small (1.6 km2), relatively well-studied glacier on Mount Hood, Oregon. Since 1901, glacier area decreased from 2.03 ± 0.16 km2 to 1.64 ± 0.05 km2 by 2004, a loss of 19%, and the terminus retreated about 600 m. Mount Hood's glaciers as a whole have lost 34% of their area. During the first part of the 20th century the glacier thinned and retreated, then thickened and advanced between the 1940s and 1960s because of cooler temperatures and increased winter precipitation and has since accelerated its retreat, averaging about 1.0 m a-1 thinning and a 20 m a-1 retreat rate by 2004. Surface velocities at a transverse profile reflect ice thickness over time, reaching a low of 1.4 m a-1 in 1949 before increasing to 6.9 ± 1.7 m a-1 from the 1960s to the 1980s. Velocities have since slowed to about 2.3 m a-1 , about the 1940 speed.
|
13 |
Current and future economic impact of Mount Hood National Forest outdoor recreation consumption /Anderson, David M January 1991 (has links)
Thesis (M.S.)--Oregon State University, 1992. / Typescript (photocopy). Includes bibliographical references (leaves 80-89). Also available on the World Wide Web.
|
14 |
Controls on eruption style and magma compositions at Mount Hood, OregonKoleszar, Alison M. 21 July 2011 (has links)
This study is an effort to characterize the magma sources, plumbing system, and eruptive behavior of Mount Hood, a low-explosivity recharge-dominated volcano in the Oregon Cascades. The three manuscripts in this dissertation make use of melt inclusion data, phenocryst compositions, and whole rock petrology and geochemistry to build a schematic model of plumbing, mixing, and eruption at Mount Hood.
Volatile contents in melt inclusions were measured by Fourier Transform Infrared Spectroscopy (FTIR) and Secondary Ion Mass Spectometry (SIMS). These measurements indicate that the pre-eruptive volatile contents at Mount Hood are comparable to concentrations in more explosive volcanoes, and do not sufficiently explain the low explosivity of Mount Hood. Measured H₂O contents were also used to test the validity of multiple different hygrometers.
Various geothermobarometers were applied to the melt inclusions and phenocrysts from Mount Hood, and demonstrate that pre-eruptive temperatures increase
by 100-150 ̊C immediately after mafic recharge, which occurs days to weeks prior to eruption and is accompanied by a 5-10 fold decrease in magma viscosity. Numerical simulations of magma ascent indicate that magma fragmentation is significantly delayed with this magnitude of pre-eruptive heating, which reduces the likelihood of explosive eruption.
Analyses of amphibole demonstrate two markedly different populations, which correspond to different magma compositions, temperatures, and pressures. Pressure and temperature calculations were compared to other geothermobarometers to crosscheck the validity of these results and generally agreed well.
Trace element concentrations in lavas, enclaves, and inclusions from Mount Hood confirm previous models for simple binary mixing at Mount Hood. A linear regression technique for extrapolating the major element contents of the mixing endmembers works acceptably well to characterize the trace element budgets of these endmembers.
Additionally, we observe that the "recharge filter" that is responsible for the compositionally monotonous lavas at Mount Hood is also the likely cause of long-term low explosivity, and is indicative of a two-part magma plumbing system that may be a general model for a number of other recharge-dominated arc volcanoes. The results presented in this dissertation, in concert with previous results by other authors, converge on a generally consistent model for the production, hybridization, and eruption of intermediate lavas at Mount Hood and elsewhere. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Sept. 16, 2011 - March 16, 2012
|
15 |
THE IMPACT OF MELTING GLACIERS ON MOUNTAIN GROUNDWATER SYSTEMS: A MULTI-YEAR STUDY INCORPORATING ISOTOPIC TRACERS AND MICROBIOLOGY IN MOUNT HOOD NATIONAL FOREST, OREGON, AND GLACIER NATIONAL PARK, MONTANA, AND TIME SERIES ANALYSES IN THE SWISS ALPSJordyn B Miller (11852195) 17 December 2021 (has links)
<p>Alpine glaciers around the world are in retreat and are unlikely to reverse course. This dissertation focuses on improving our understanding of the impact of glacial melt on mountainous alpine groundwater systems. Studies on glacial melt-groundwater interactions have become more prevalent, particularly in the past 5 years, because we are recognizing that the contribution of glacial melt to the hydrologic cycle is not limited to melt-season surficial streamflow. The importance of glacial melt to mountain groundwater systems has the potential to not only influence spring and streamflow generation, but also the longevity of alpine specific, and frequently endangered species, dependent on this source of recharge. This recharge may be vital for human water needs such as potable water, agriculture, and hydrothermal power.</p>The impact that a transition from glacial melt to snow- or rain-dominated streamflow and recharge will have on alpine ecosystems in a continually warming climate is far reaching. This dissertation: 1) tests whether glacial melt is an important source of recharge for mountain springs and their microbial communities, 2) investigates the spatial impact of glacial-melt recharge on residence times and flowpaths that support alpine springs, and 3) explores the impact of post-peak water on alpine baseflow using a statistical, timeseries approach. My results show that the groundwater systems in glaciated mountainous, alpine regions are particularly vulnerable to climate change. Springs in Mount Hood National Forest and Glacier National Park were sampled over a 4-year period, and in addition, publicly available long-term streamflow datasets were are also utilized. The chapters composing this work build upon each other, and compare and contrast the factors most important in glacial melt recharging the mountain-block. Information that is vital to the management of alpine water resources by landowners, watershed groups, scientists, and others interested in mountain groundwater systems in glaciated alpine regions is presented in the following pages.
|
Page generated in 0.0473 seconds