Spelling suggestions: "subject:"mountain hemlock"" "subject:"mountain hemlocks""
11 |
Pacific silver fir site index in relation to ecological measures of site qualityKlinka, Karel January 1999 (has links)
Ecosystem-specific forest management requires comprehension of tree species productivity in managed settings, and how this productivity varies with the ecological
determinants of site quality, i.e., the environmental factors that directly affect the growth of plants: light, heat, soil moisture, soil nutrients, and soil aeration. A good understanding of this variation is necessary for making species- and site-specific silvicultural decisions to maximize productivity. Productivity of a given species is usually measured by site index (tree height at 50 years at breast height age). Quantitative relationships between site index and these measures of site quality provide predictive models for estimating site index.
Pacific silver fir (Abies amabilis (Dougl. ex Loud.) Forbes) is an important timber crop species in the coastal forests of British Columbia. In relation to climate, its range in
southwestern British Columbia extends from sea level to almost timberline, and from the hypermaritime region on western Vancouver Island to the subcontinental region on the leeward side of the Coast Mountains. In relation to soils, its range extends from slightly dry to wet sites and from very poor to very rich sites. In view of this relatively wide climatic amplitude, a large variability in productivity can be expected. It is particularly important to consider the growth performance of Pacific silver fir when decisions
are made regarding whether or not to cut stands on high-elevation sites. In the study summarized here, relationships between Pacific silver fir site index and selected ecological measures of site quality were examined, and site index models using these measures as predictors were developed.
|
12 |
Climate - radial growth relationships in some major tree species of British ColumbiaKlinka, Karel, Splechtna, Bernhard E., Dobry, Jaroslav, Chourmouzis, Christine January 1998 (has links)
This study examines the influence of climate on tree-ring properties of several major tree species: Pacific silver fir (Abies amabilis (Dougl. ex Loud.) Forbes), subalpine fir (Abies lasiocarpa (Hook.) Nutt.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and lodgepole pine (Pinus contorta var. latifolia Dougl. ex Loud.). Our three objectives were to determine how (1) tree-ring properties change along an elevation gradient, (2) short-term climatic influences are correlated with tree-ring properties, and (3) long-term climatic influence on tree-ring properties.
|
13 |
Regeneration patterns in the Mountain hemlock zoneKlinka, Karel, Brett, Bob, Chourmouzis, Christine January 1997 (has links)
The Mountain Hemlock (MH) zone includes all subalpine forests along British Columbia’s coast. It occurs at elevations where most precipitation falls as snow and the growing season is less than 4 months long. The zone includes the continuous forest of the forested subzones and the tree islands of the parkland subzones (Figure 1). Old-growth stands are populated by mountain hemlock, Pacific silver fir, and Alaska yellow-cedar, and are among the least-disturbed ecosystems in the world. Canopy trees grow slowly and are commonly older than 600 years, while some Alaska yellow-cedars may be up to 2000 years old.
Understanding regeneration patterns in the MH zone has become increasingly important as logging continues towards higher elevations of the zone where snowpacks are deeper.
|
14 |
New height growth and site index models for Pacific silver fir in southwestern British ColumbiaKlinka, Karel, Splechtna, Bernhard E., Chourmouzis, Christine, Varga, Pal January 1999 (has links)
Pacific silver fir (Abies amabilis (Dougl. ex Loud.) Forbes) is an important timber crop species in coastal forests of B.C. Its range extends from sea-level to almost timberline, and from the hypermaritime region on the west coast of Vancouver Island to the
subcontinental region on the leeward side of the Coast Mountains. With this relatively wide climatic amplitude, a large variability in the height growth pattern of Pacific silver fir can be expected, since climate is considered to be the most influential determinant
of the trajectory of height over age of forest trees. This variability, however, is not reflected in the height growth curves and site index tables used to estimate Pacific silver fir site index, since the curves and tables were developed from low-elevation stands on
Vancouver Island. Consequently, when these curves and tables are applied to high-elevation or submaritime stands, we get biased estimates of site index. Accurate estimates of site index are necessary for accurate yield predictions. Furthermore, they are essential for making rational decisions about whether to cut the forest in situations where potential tree growth is marginal, such as in high-elevation forests.
|
15 |
Classification of high-elevation, non-forested plant communities in coastal British ColumbiaKlinka, Karel, Chourmouzis, Christine, Brett, Bob, Qian, H. January 2001 (has links)
Non-forested ecosystems dominate high elevation sites in coastal British Columbia, yet there has never been a comprehensive classification or mapping of all high-elevation community types. The objective of this study is to collate and expand upon previous classifications, and thereby to increase our understanding of the habitats and composition of these plant communities.
|
16 |
Classification of high-elevation, non-forested plant communities in coastal British Columbia. Full report.Brett, Bob, Klinka, Karel, Qian, H., Chourmouzis, Christine 03 1900 (has links)
This report expands and clarifies previous classifications of non-forested plant communities from upper subalpine and alpine locations in coastal British Columbia. A total of 80 plots (releves) sampled specifically for this study were added to 202 releves from published and unpublished studies conducted since 1963. We used tabular and multivariate methods to synthesize and classify plant communities according to the Braun-Blanquet approach. Plant communities were classified into 37 vegetation units (associations or subassociations) which served as the basis of the resulting hierarchical classification. We describe the habitat and species composition of these vegetation units and their relationship to units recogized elsewhere in the Pacific Northwest. We then present eight generalized habitat types which we propose as the basic units for future ecosystem mapping. Each of these habitat types includes a predictable mosaic of vegetation units whose pattern occurs at too fine a scale to map individually.
|
17 |
Towards a quantitative classification of soil nutrient regimes in British Columbia : comparison of regional studiesKlinka, Karel, Varga, Pal, Chourmouzis, Christine January 1999 (has links)
The three major components in the site classification of the biogeoclimatic ecosystem classification system are: climatic regimes, soil moisture regimes (SMRs) and soil nutrient regimes (SNRs). Both SMRs and SNRs can be identified in the field using soil
characteristics and indicator plants. In the case of SMRs a quantitative classification was also developed that allow comparison of SMRs in different subzones. However, similar quantitative classification has not yet been developed for SNRs. This pamphlet
summarizes and compares the results of several regional studies conducted in different biogeclimatic zones. Each of theses studies aimes to develop a quantitative SNR classification (Table 1). The comparison will examine: (1) how well the field-based
classification matches quantitative classification, and (2) which direct measures distinguish best between field-identified SNRs.
|
18 |
Postglacial vegetation history of mountainous landscapes on Vancouver Island, British Columbia, Canada.Mazzucchi, David 03 May 2010 (has links)
Five lake and one soil sediment record from six mountainous sites on Vancouver Island, British Columbia, Canada, were examined for changes in pollen, macrofossils, charcoal, and mineral clasts to reconstruct late Quaternary history of vegetation, fire and climate. The results provide insights into the history and dynamics of the Mountain Hemlock biogeoclimatic zone and highlight the role of several species and species groups not previously recognized. During the early Holocene, Alnus crispa expanded throughout the region following deglaciation, playing a more important role in these ecosystems than today. Abies lasiocarpa was the dominant Abies species at these sites during the late glacial and early Holocene until it was replaced by A. amabilis between about 10,500 and 7300 calBP, perhaps due to changes in regional atmospheric circulation and greater seasonal variability in insolation than we experience today. A. amabilis increased during the mid Holocene and was later replaced at the sites by increased abundance of T. mertensiana while T. heterophylla became much more abundant at nearby low elevations. Ericaceous-heath communities were established soon after deglaciation at the moister sites but not until about 7000 calBP at drier sites. These drier sites show more variation in vegetation throughout their records than the wetter sites. High charcoal and clast concentrations coincident with rapid vegetation shifts during the early Holocene suggest that these changes were probably the result of large stand-clearing fires that exposed mineral soils. A peak in charcoal at several of the sites occurs at ca. 4000 calBP suggesting more frequent fire at that time. During the late glacial and very early Holocene, P. contorta was an important seral species until A. crispa became well established. In the mid to late Holocene when Ericaceous-heath became established, A. crispa was unable to predominate, possibly because of reduced fire activity or because the heath communities hindered the exposure of fresh mineral soil surfaces. As a consequence, conifer-dominated stands were favoured. Basal sediments from these sites are not as old as they are at lower elevations, suggesting that deglaciation may have happened later at higher elevations.
|
Page generated in 0.0437 seconds