Spelling suggestions: "subject:"moyennable"" "subject:"moyennables""
1 |
BAS DU SPECTRE ET GEOMETRIE DES VARIETES DE VOLUME INFINITapie, Samuel 25 September 2009 (has links) (PDF)
Cette thèse étudie les variétés non compactes dont le bas du spectre du Laplacien est une valeur propre isolée. L'objectif général est de relier la géométrie de ces variétés à certaines propriétés spectrales.<br /><br />Au Chapitre 2, nous étudions les variétés $G$-périodiques, qui généralisent les variétés périodiques et les revêtements. Nous relions le bas du spectre d'une telle variété avec celui de sa cellule élémentaire et la combinatoire du graphe $G$ sous-jacent. Nous montrons que les deux bas du spectres sont égaux si et seulement si le graphe est moyennable.<br /><br />Au Chapitre 3, nous donnons une caractérisation du bas du spectre d'une variété à bord par ses fonctions $\lambda$-harmoniques positives. Puis nous montrons que pour une métrique générique, lorsque le bas du spectre est une valeur propre isolée la première fonction propre est de Morse. Enfin, nous montrons que pour un revêtement générique, on peut construire un domaine fondamental pour l'action du groupe de revêtement sur lequel le relevé de la première fonction propre vérifie les conditions de Neumann. Ceci nous permet d'appliquer les résultats du Chapitre 2 aux revêtements.<br /><br />Au Chapitre 4, nous présentons une conjecture due à R. Canary, qui prévoit que lorsque l'on déforme une variété hyperbolique de dimension 3 géométriquement finie et acylindrique, le bas du spectre est maximal lorsque le bord du coeur convexe est lisse. Au Chapitre 5, une étude de l'entropie des variétés à courbure négative pincée convexe cocompacte nous permet d'obtenir une formule de variation du bas du spectre dans le cas des déformations des variétés hyperboliques convexe cocompactes.
|
2 |
Pièges dans la théorie des feuilletages : exemples et contre-exemplesRechtman, Ana 06 February 2009 (has links) (PDF)
Dans ce travail, nous nous intéressons à deux questions. La première est de savoir si les champs de vecteurs non singuliers et géodésibles sur une variété fermée de dimension trois ont des orbites périodiques. La seconde, étudie les relations entre les feuilletages moyennables et les feuilletages dont toutes les feuilles sont Folner. L'idée commune dans ces deux problèmes est l'utilisation de pièges: un outil qui nous permet de changer un feuilletage à l'intérieur d'une carte feuilletée.<br /> <br /> Dans le premier chapitre nous abordons la première question. On dit qu'un champ de vecteurs non singulier est géodésible s'il existe une métrique riemannienne sur la variété ambiante pour laquelle toutes les orbites sont des géodésiques. Soit X un tel champ de vecteurs sur une variété fermée de dimension trois. Supposons que la variété est difféomorphe à la sphère ou son deuxième groupe d'homotopie est non trivial. Pour ces variétés, on montre que si X est analytique réel ou s'il préserve une forme volume, il possède une orbite périodique. <br /><br />Le deuxième chapitre est dédié à la seconde question. En 1983, R. Brooks avait annoncé qu'un feuilletage dont presque toutes les feuilles sont Folner est moyennable. A l'aide d'un piège, on va construire un contre-exemple à cette affirmation, c'est-à-dire un feuilletage non moyennable dont toutes les feuilles sont Folner. <br />Nous cherchons ensuite des conditions suffisantes sur le feuilletage pour que l'énoncé de R. Brooks soit valable. Comme suggéré par V. A. Kaimanovich, une possibilité est supposer que le feuilletage soit minimal. On montre que cette hypothèse est suffisante en utilisant un théorème de D. Cass que décrit les feuilles minimales.
|
3 |
Géométrie et dynamique des structures Hermite-Lorentz / Geometry and Dynamics of Hermite-Lorentz structuresBen Ahmed, Ali 06 July 2013 (has links)
Dans la veine du programme d'Erlangen de Klein, travaux d'E. Cartan, M. Gromov, et d'autres, ce travail se trouve à cheval, entre la géométrie et les actions de groupes. Le thème global serait de comprendre les groupes d'isométries des variétés pseudo-riemanniennes. Plus précisément, suivant une "conjecture vague" de Gromov, classifier les variétés pseudo-riemanniennes dont le groupe d'isométries agit non-proprement, i.e. que son action ne préserve pas de métrique riemannienne auxiliaire?Plusieurs travaux ont été accomplis dans le cas des métriques lorentziennes (i.e. de signature (- +...+)). En revanche, le cas pseudo-riemannien général semble hors de portée.Les structures Hermite-Lorentz se trouvent entre le cas lorentzien et le premier cas pseudo-riemannien général, i.e. de signature (- - +…+). De plus, elle se définit sur des variétés complexes, et promet une extra-rigidité. Plus précisément, une structure Hermite-Lorentz sur une variété complexe consiste en une métrique pseudo-riemannienne de signature (- - +…+) qui est hermitienne au sens qu'elle est invariante par la structure presque complexe. Par analogie au cas hermitien classique, on définit naturellement une notion de métrique Kähler-Lorentz.Comme exemple, on a l'espace de Minkowski complexe ; dans un certain sens, on a un temps de dimension 1 complexe (du point de vue réel, le temps est 2-dimensionnel). On a également l'espace de Sitter et anti de Sitter complexes. Ils ont une courbure holomorphe constante, et généralisent dans ce sens les espaces projectifs et hyperboliques complexes.Cette thèse porte sur les variétés Hermite-Lorentz homogènes. En plus des exemples cités, il y a deux autres espaces symétriques, qui peuvent naturellement jouer le rôle de complexification des espaces de Sitter et anti de Sitter réels.Le résultat principal de la thèse est un théorème de rigidité de ces espaces symétriques : tout espace Hermite-Lorentz homogène à isotropie irréductible est l'un des cinq espaces symétriques précédents. D'autres résultats concernent le cas où l'on remplace l'hypothèse d'irréductibilité par le fait que le groupe d'isométries soit semi-simple. / In the vein of Klein's Erlangen program, the research works of E. Cartan, M.Gromov and others, this work straddles between geometry and group actions. The overall theme is to understand the isometry groups of pseudo-Riemannian manifolds. Precisely, following a "vague conjecture" of Gromov, our aim is to classify Pseudo-Riemannian manifolds whose isometry group act’s not properly, i.e that it’s action does not preserve any auxiliary Riemannian metric. Several studies have been made in the case of the Lorentzian metrics (i.e of signature (- + .. +)). However, general pseudo-Riemannian case seems out of reach. The Hermite-Lorentz structures are between the Lorentzian case and the former general pseudo-Riemannian, i.e of signature (- -+ ... +). In addition, it’s defined on complex manifolds, and promises an extra-rigidity. More specifically, a Hermite-Lorentz structure on a complex manifold is a pseudo-Riemannian metric of signature (- -+ ... +), which is Hermitian in the sense that it’s invariant under the almost complex structure. By analogy with the classical Hermitian case, we naturally define a notion of Kähler-Lorentz metric. We cite as example the complex Minkowski space in where, in a sense, we have a one-dimensional complex time (the real point of view, the time is two-dimensional). We cite also the de Sitter and Anti de Sitter complex spaces. They have a constant holomorphic curvature, and generalize in this direction the projective and complex hyperbolic spaces.This thesis focuses on the Hermite-Lorentz homogeneous spaces. In addition with given examples, two other symmetric spaces can naturally play the role of complexification of the de Sitter and anti de Sitter real spaces.The main result of the thesis is a rigidity theorem of these symmetric spaces: any space Hermite-Lorentz isotropy irreducible homogeneous is one of the five previous symmetric spaces. Other results concern the case where we replace the irreducible hypothesis by the fact that the isometry group is semisimple.
|
Page generated in 0.0332 seconds