• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des mécanismes épigénétiques associés au phénomène de résistance aux glucocorticoïdes : implication dans la régulation de l'expression de la MMP-9 / Study of epigenetic mechanisms associated with glucocorticoid resistance phenomenon : involvement in the regulation of MMP-9 expression

Hentati, Marwa 04 November 2016 (has links)
L’utilisation chronique des glucocorticoïdes conduit généralement au développement d’une résistance aux glucocorticoïdes impliquant une modulation de l’expression de gènes impliqués dans l’inflammation ou la progression tumorale comme celui codant la MMP-9. L’expression de la MMP-9 est régulée par des mécanismes épigénétiques notamment l’acétylation des histones gouvernée par la balance HDAC/HAT (histone deacetyltransferase/histone acetyltransferase) et les micro-ARNs (miRs), mécanismes également impliqués dans les phénomènes de cortico-résistance. Cependant, les altérations épigénétiques survenant suite à un traitement chronique aux glucocorticoïdes et leurs répercutions sur l’expression de la MMP-9 ne sont pas encore clairement élucidés. L’objectif de notre étude consiste donc à déterminer le rôle des mécanismes épigénétiques dans le phénomène de résistance aux glucocorticoïdes à travers leur implication dans la régulation de l’expression de la MMP-9. Nous avons montré que l’exposition chronique aux glucocorticoïdes a perturbé, à la fois, la balance HDAC/HAT (favorisant une hyperacétylation des histones) et l’expression des miRs conduisant ainsi à une surexpression de la MMP-9. De plus, nous avons montré qu’en inhibant les HDACs par le MS-275 amplifiant ainsi le phénomène d’hyperacétylation des histones, le profil d’expression des miRs a été davantage perturbé, une perturbation qui s’est répercuté sur l’expression et la sécrétion de la MMP-9. En conclusion, nous avons montré que l’acétylation des histones et la modulation de l’expression des miRs pourraient agir en harmonie pour contrôler l'expression de la MMP-9 dans un contexte de résistance aux glucocorticoïdes. / Chronic use of glucocorticoids generally leads to the development of glucocorticoid resistance which involves a modulation of the expression of genes involved in inflammation or tumor progression as that encoding the MMP-9. MMP-9 expression is regulated by epigenetic mechanisms including histone acetylation governed by the balance HDAC / HAT (histone deacetyltransferase / histone acetyltransferase) and microRNAs (miRs). These mechanisms could be involved in the phenomena of cortico-resistance. However, epigenetic alterations occurring after chronic treatment with glucocorticoids and their repercussions on MMP-9 expression are not yet clearly understood. The aim of our study is to determine the role of epigenetic mechanisms in the phenomenon of glucocorticoid resistance through their involvement in the regulation of MMP-9 expression. We demonstrated that chronic exposure to glucocorticoids disrupted both the balance HDAC / HAT (favoring a histone hyperacetylation) and expression of miRs thus leading to an overexpression of MMP-9. In addition, we have shown that inhibiting HDACs by MS-275 thereby amplifying the phenomenon of histone hyperacetylation, the expression profile of miRs was more disturbed. This disturbance has affected MMP-9 expression and secretion. In conclusion, we have shown that histone acetylation and modulation of miRs expression of harmony miRs could act to control the expression of MMP-9 in a glucocorticoid resistance context.
2

Einfluss von HDAC-Inhibitoren auf die Expression IFNγ-regulierter Gene und die Parasitenentwicklung in Toxoplasma gondii-infizierten Makrophagen / Impact of HDAC inhibitors on the expression of IFNγ-regulated genes and parasite development in Toxoplasma gondii-infected macrophages

Sumpf, Kristina 05 December 2017 (has links)
No description available.
3

Improving Adoptive Cell Therapy to Overcome Tumor Resistance / MS-275 Enhances Antitumor Immunity During Adoptive Cell Therapy to Overcome Tumor Resistance

Nguyen, Andrew 20 December 2021 (has links)
Cancer immunotherapy has gained attention in recent years for its successes in potentiating immune responses that can elicit tumor control. In particular, adoptive cell therapy (ACT), which involves the autologous/allogeneic transplant of ex vivo-cultivated tumor-specific T lymphocytes, can mediate potent tumor recognition and killing; however, durable clinical responses are often difficult to obtain in solid tumors. Solid tumors and their unique microenvironments have the capacity to evade and suppress antitumor immune responses and represent significant hurdles for effective ACT. Recently, we have discovered that chemical inhibition of histone deacetylases via MS-275 (Entinostat) during ACT can subvert tumor resistance to foster potent, broad-spectrum antitumor immunity. Overall, the work described supports the efficacy of ACT in the treatment of immunosuppressive, solid tumors; however, consistency in durable clinical outcomes can only be achieved through the concurrent therapeutic targeting of tumor resistance mechanisms. This thesis uses pre-clinical models to describe how tumor resistance to ACT can manifest, and demonstrates that concurrent MS-275 delivery drives extensive immunomodulation to promote sustained tumor clearance. This includes: 1) The polarization of tumor-infiltrating myeloid cells into cytotoxic effectors with the ability to reject immune escape variants 2) The inflammatory remodeling of the tumor microenvironment to potentiate epitope spreading against secondary tumor antigens 3) The transcriptional reprogramming of adoptively transferred T cells to overcome tumor-burden-dependent exhaustion We expect that the results will help facilitate the development of next-generation ACT platforms that will feature strategies for multi-mechanistic perturbation of tumor resistance. / Thesis / Doctor of Philosophy (PhD) / The host immune system has the ability to recognize and destroy tumor cells. Therapeutic platforms that leverage antitumor immune cells, specifically T cells, have shown potency in the elimination of cancer. In the clinic, cancer immunotherapies have demonstrated early success against hematological malignancies; however, are unreliable in the treatment of solid tumors. Solid tumors utilize intrinsic and adapted mechanisms of resistance to mitigate the effectiveness of cancer immunotherapy. This thesis pursues research questions aimed at understanding how tumors resist immunotherapy, what mechanisms are utilized, and how to overcome these obstacles. We anticipate that these results will contribute to the development and incorporation of strategies to subvert tumor resistance and potentiate T cells against solid tumors.
4

MS-275 (ENTINOSTAT) PROMOTES SUSTAINED TUMOR REGRESSION IN THE CONTEXT OF BOOSTING ONCOLYTIC IMMUNOTHERAPY

Nguyen, Andrew 10 1900 (has links)
<p>We showed previously that histone deacetylase (HDAC) inhibition with MS-275 in the context of boosting oncolytic immunotherapy can drive heightened antitumor responses, leading to increased survival in mouse intracranial melanoma models. However, it is currently unclear how the co-administration of MS-275 directly impacts tumor growth. Here, we investigated the role of MS-275 in preventing the outgrowth of antigen-deficient tumor variants as a result of suboptimal treatment protocols. By adoptively transferring tumor antigen-specific memory T cells (Tm) that were expanded <em>in vivo</em> with recombinant Vesicular Stomatitis Virus (VSV-gp33), we observed complete regression of 5-day old, intradermal B16-gp33 tumors (B16-F10 overexpressing the LCMV GP33-41 epitope); however, the tumors relapsed within a month of treatment. Relapsing tumor explants were able to grow in mice that were prophylactically immunized with recombinant Adenovirus (Ad-gp33), indicating that the tumor could no longer be recognized. Strikingly however, there was zero tumor recurrence if MS-275 was co-administered with Tm and VSV-gp33, suggesting that MS-275 may prevent the emergence and/or escape of antigen loss variants. Such a benefit is lost if the administration of the drug is delayed as little as five days post VSV treatment, suggesting that its synergistic effects coincide with early immune responses and oncolytic activity. Furthermore, transplantation studies of relapsing tumor explants showed that combination treatment was unable to provide tumor protection, confirming that the mechanisms by which MS-275 prevents tumor recurrence are unlikely through direct up-regulation of antigen presentation in low- or non-antigen-expressing variants <em>in vivo</em>. Indeed, CD4 depletion in the absence of MS-275 resulted in sustained tumor regression, implying that immunoregulatory cells such as CD4+ Treg play a prominent role in sustaining tumor regression. Moreover, MS-275 modulates the phenotypic status of tumor-infiltrating MDSCs toward the differentiation of inflammatory macrophages. Taken together, the data suggests that combination therapy with HDACi with oncolytic immunotherapy mediates a synergized immune attack against the tumor through subversion of immunomodulatory mechanisms.</p> / Master of Science in Medical Sciences (MSMS)
5

Preclinical exploration of novel small molecules as anticancer agents in triple-negative and HER2/neu-positive breast cancers

Weng, Shu-Chuan January 2008 (has links)
No description available.

Page generated in 0.02 seconds