• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • Tagged with
  • 22
  • 22
  • 22
  • 22
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multi Agent Reinforcement Learning for Game Theory : Financial Graphs / Multi-agent förstärkning lärande för spelteori : Ekonomiska grafer

Yu, Bryan January 2021 (has links)
We present the rich research potential at the union of multi agent reinforcement learning (MARL), game theory, and financial graphs. We demonstrate how multiple game theoretic scenarios arise in three node financial graphs with minor modifications. We highlight six scenarios used in this study. We discuss how to setup an environment for MARL training and evaluation. We first investigate individual games and demonstrate that MARL agents consistently learn Nash Equilibrium strategies. We next investigate mixed games and find again that MARL agents learn Nash Equilibrium strategies given sufficient information and incentive (e.g. prosociality). We find introducing a embedding layer in agents deep network improves learned representations and as such, learned strategies, (2) MARL agents can learn a variety of complex strategies, and (3) selfishness improves strategies’ fairness and efficiency. Next we introduce populations and find that (1) pro social members in a population influences the action profile and that (2) complex strategies present in individual scenarios no longer emerge as populations’ portfolio of strategies converge to a main diagonal. We identify two challenges that arises in populations; namely (1) identifying partner’s prosociality and (2) identifying partner’s identity. We study three information settings which supplement agents observation set and find having knowledge of partners prosociality or identity to have negligible impact on how portfolio of strategies converges. / Vi presenterar den rika forskningspotentialen vid unionen av multi-agent förstärkningslärning (MARL), spelteori och finansiella grafer. Vi demonstrerar hur flera spelteoretiska scenarier uppstår i tre nodgrafikgrafer med mindre ändringar. Vi belyser sex scenarier som används i denna studie. Vi diskuterar hur man skapar en miljö för MARL -utbildning och utvärdering. Vi undersöker först enskilda spel och visar att MARL -agenter konsekvent lär sig Nash Equilibrium -strategier. Vi undersöker sedan blandade spel och finner igen att MARL -agenter lär sig Nash Equilibrium -strategier med tillräcklig information och incitament (t.ex. prosocialitet). Vi finner att införandet av ett inbäddande lager i agenternas djupa nätverk förbättrar inlärda representationer och som sådan inlärda strategier, (2) MARL-agenter kan lära sig en mängd komplexa strategier och (3) själviskhet förbättrar strategiernas rättvisa och effektivitet. Därefter introducerar vi populationer och upptäcker att (1) pro sociala medlemmar i en befolkning påverkar åtgärdsprofilen och att (2) komplexa strategier som finns i enskilda scenarier inte längre framkommer när befolkningens portfölj av strategier konvergerar till en huvuddiagonal. Vi identifierar två utmaningar som uppstår i befolkningen; nämligen (1) identifiera partnerns prosocialitet och (2) identifiera partnerns identitet. Vi studerar tre informationsinställningar som kompletterar agents observationsuppsättning och finner att kunskap om partners prosocialitet eller identitet har en försumbar inverkan på hur portföljen av strategier konvergerar.
12

Agent Contribution in Multi-Agent Reinforcement Learning : A Case Study in Remote Electrical Tilt

Emanuelsson, William January 2024 (has links)
As multi-agent reinforcement learning (MARL) continues to evolve and find applications in complex real-world systems, the imperative for explainability in these systems becomes increasingly critical. Central to enhancing this explainability is tackling the credit assignment problem, a key challenge in MARL that involves quantifying the individual contributions of agents toward a common goal. In addressing this challenge, this thesis introduces and explores the application of Local and Global Shapley Values (LSV and GSV) within MARL contexts. These novel adaptations of the traditional Shapley value from cooperative game theory are investigated particularly in the context of optimizing remote electrical tilt in telecommunications antennas. Using both predator-prey and remote electrical tilt environments, the study delves into local and global explanations, examining how the Shapley value can illuminate changes in agent contributions over time and across different states, as well as aggregate these insights over multiple episodes. The research findings demonstrate that the use of Shapley values enhances the understanding of individual agent behaviors, offers insights into policy suboptimalities and environmental nuances, and aids in identifying agent redundancies—a feature with potential applications in energy savings in real-world systems. Altogether, this thesis highlights the considerable potential of employing the Shapley value as a tool in explainable MARL. / I takt med utvecklingen och tillämpningen av multi-agent förstärkningsinlärning (MARL) i komplexa verkliga system, blir behovet av förklarbarhet i dessa system allt mer väsentligt. För att förbättra denna förklarbarhet är det viktigt att lösa problemet med belöningstilldelning, en nyckelutmaning i MARL som innefattar att kvantifiera de enskilda bidragen från agenter mot ett gemensamt mål. I denna uppsats introduceras och utforskas tillämpningen av lokala och globala Shapley-värden (LSV och GSV) inom MARL-sammanhang. Dessa nya anpassningar av det traditionella Shapley-värdet från samarbetsbaserad spelteori undersöks särskilt i sammanhanget av att optimera fjärrstyrda elektriska lutningar i telekommunikationsantenner. Genom att använda både rovdjur-byte och fjärrstyrda elektriska lutningsmiljöer fördjupar studien sig i lokala och globala förklaringar, och undersöker hur Shapley-värdet kan belysa förändringar i agenters bidrag över tid och över olika tillstånd, samt sammanfatta dessa insikter över flera episoder. Resultaten visar att användningen av Shapley-värden förbättrar förståelsen för individuella agentbeteenden, erbjuder insikter i policybrister och miljönyanser, och hjälper till att identifiera agentredundanser – en egenskap med potentiella tillämpningar för energibesparingar i verkliga system. Sammanfattningsvis belyser denna uppsats den betydande potentialen av att använda Shapley-värdet som ett verktyg i förklaringsbar MARL.
13

Measuring and Influencing Sequential Joint Agent Behaviours

Raffensperger, Peter Abraham January 2013 (has links)
Algorithmically designed reward functions can influence groups of learning agents toward measurable desired sequential joint behaviours. Influencing learning agents toward desirable behaviours is non-trivial due to the difficulties of assigning credit for global success to the deserving agents and of inducing coordination. Quantifying joint behaviours lets us identify global success by ranking some behaviours as more desirable than others. We propose a real-valued metric for turn-taking, demonstrating how to measure one sequential joint behaviour. We describe how to identify the presence of turn-taking in simulation results and we calculate the quantity of turn-taking that could be observed between independent random agents. We demonstrate our turn-taking metric by reinterpreting previous work on turn-taking in emergent communication and by analysing a recorded human conversation. Given a metric, we can explore the space of reward functions and identify those reward functions that result in global success in groups of learning agents. We describe 'medium access games' as a model for human and machine communication and we present simulation results for an extensive range of reward functions for pairs of Q-learning agents. We use the Nash equilibria of medium access games to develop predictors for determining which reward functions result in turn-taking. Having demonstrated the predictive power of Nash equilibria for turn-taking in medium access games, we focus on synthesis of reward functions for stochastic games that result in arbitrary desirable Nash equilibria. Our method constructs a reward function such that a particular joint behaviour is the unique Nash equilibrium of a stochastic game, provided that such a reward function exists. This method builds on techniques for designing rewards for Markov decision processes and for normal form games. We explain our reward design methods in detail and formally prove that they are correct.
14

Emerging communication between competitive agents

Noukhovitch, Mikhail 12 1900 (has links)
Nous utilisons l’apprentissage automatique pour répondre à une question fondamentale: comment les individus peuvent apprendre à communiquer pour partager de l'information et se coordonner même en présence de conflits? Cette th\`ese essaie de corriger l'idée qui prévaut à l'heure actuelle dans la communauté de l'apprentissage profond que les agents compétitifs ne peuvent pas apprendre à communiquer efficacement. Dans ce travail de recherche, nous étudions l’émergence de la communication dans les jeux coopératifs-compétitifs à travers un jeu expéditeur-receveur que nous construisons. Nous portons aussi une attention particulière à la qualité de notre évaluation. Nous observons que les agents peuvent en effet apprendre à communiquer, confirmant des résultats connus dans les domaines des sciences économiques. Nous trouvons également trois façons d'améliorer le protocole de communication appris. Premierement, l'efficacité de la communication est proportionnelle au niveau de coopération entre les agents, les agents apprennent à communiquer plus facilement quand le jeu est plus coopératif que compétitif. Ensuite, LOLA (Foerster et al, 2018) peut améliorer la stabilité de l'entraînement et l'efficacité de la communication, principalement dans les jeux compétitifs. Et enfin, que les protocoles de communication discrets sont plus adaptés à l'apprentissage d'un protocole de communication juste et coopératif que les protocoles de communication continus. Le chapitre 1 présente une introduction aux techniques d'apprentissage utilisées par les agents, l'apprentissage automatique et l'apprentissage par renforcement, ainsi qu'une description des méthodes d'apprentissage par renforcement propre aux systemes multi-agents. Nous présentons ensuite un historique de l'émergence du language dans d'autres domaines tels que la biologie, la théorie des jeux évolutionnaires, et les sciences économiques. Le chapitre 2 approndit le sujet de l'émergence de la communication entre agents compétitifs. Le chapitre 3 présente les conclusions de notre travail et expose les enjeux et défis de l'apprentissage de la communication dans un environment compétitif. / We investigate the fundamental question of how agents in competition learn communication protocols in order to share information and coordinate with each other. This work aims to overturn current literature in machine learning which holds that unaligned, self-interested agents do not learn to communicate effectively. To study emergent communication for the spectrum of cooperative-competitive games, we introduce a carefully constructed sender-receiver game and put special care into evaluation. We find that communication can indeed emerge in partially-competitive scenarios, and we discover three things that are tied to improving it. First, that selfish communication is proportional to cooperation, and it naturally occurs for situations that are more cooperative than competitive. Second, that stability and performance are improved by using LOLA (Foerster et al, 2018), a higher order ``theory-of-mind'' learning algorith, especially in more competitive scenarios. And third, that discrete protocols lend themselves better to learning fair, cooperative communication than continuous ones. Chapter 1 provides an introduction to the underlying learning techniques of the agents, Machine Learning and Reinforcement Learning, and provides an overview of approaches to Multi-Agent Reinforcement Learning for different types of games. It then gives a background on language emergence by motivating this study and examining the history of techniques and results across Biology, Evolutionary Game Theory, and Economics. Chapter 2 delves into the work on language emergence between selfish, competitive agents. Chapter 3 draws conclusion from the work and points out the intrigue and challenge of learning communication in a competitive setting, setting the stage for future work.
15

Continuous coordination as a realistic scenario for lifelong learning

Badrinaaraayanan, Akilesh 04 1900 (has links)
Les algorithmes actuels d'apprentissage profond par renforcement (RL) sont encore très spécifiques à leur tâche et n'ont pas la capacité de généraliser à de nouveaux environnements. L'apprentissage tout au long de la vie (LLL), cependant, vise à résoudre plusieurs tâches de manière séquentielle en transférant et en utilisant efficacement les connaissances entre les tâches. Malgré un regain d'intérêt pour le RL tout au long de la vie ces dernières années, l'absence d'un banc de test réaliste rend difficile une évaluation robuste des algorithmes d'apprentissage tout au long de la vie. Le RL multi-agents (MARL), d'autre part, peut être considérée comme un scénario naturel pour le RL tout au long de la vie en raison de sa non-stationnarité inhérente, puisque les politiques des agents changent avec le temps. Dans cette thèse, nous présentons un banc de test multi-agents d'apprentissage tout au long de la vie qui prend en charge un paramétrage à la fois zéro et quelques-coups. Notre configuration est basée sur Hanabi - un jeu multi-agents partiellement observable et entièrement coopératif qui s'est avéré difficile pour la coordination zéro coup. Son vaste espace stratégique en fait un environnement souhaitable pour les tâches RL tout au long de la vie. Nous évaluons plusieurs méthodes MARL récentes et comparons des algorithmes d'apprentissage tout au long de la vie de pointe dans des régimes de mémoire et de calcul limités pour faire la lumière sur leurs forces et leurs faiblesses. Ce paradigme d'apprentissage continu nous fournit également une manière pragmatique d'aller au-delà de la formation centralisée qui est le protocole de formation le plus couramment utilisé dans MARL. Nous montrons empiriquement que les agents entraînés dans notre environnement sont capables de bien se coordonner avec des agents inconnus, sans aucune hypothèse supplémentaire faite par des travaux précédents. Mots-clés: le RL multi-agents, l'apprentissage tout au long de la vie. / Current deep reinforcement learning (RL) algorithms are still highly task-specific and lack the ability to generalize to new environments. Lifelong learning (LLL), however, aims at solving multiple tasks sequentially by efficiently transferring and using knowledge between tasks. Despite a surge of interest in lifelong RL in recent years, the lack of a realistic testbed makes robust evaluation of lifelong learning algorithms difficult. Multi-agent RL (MARL), on the other hand, can be seen as a natural scenario for lifelong RL due to its inherent non-stationarity, since the agents' policies change over time. In this thesis, we introduce a multi-agent lifelong learning testbed that supports both zero-shot and few-shot settings. Our setup is based on Hanabi --- a partially-observable, fully cooperative multi-agent game that has been shown to be challenging for zero-shot coordination. Its large strategy space makes it a desirable environment for lifelong RL tasks. We evaluate several recent MARL methods, and benchmark state-of-the-art lifelong learning algorithms in limited memory and computation regimes to shed light on their strengths and weaknesses. This continual learning paradigm also provides us with a pragmatic way of going beyond centralized training which is the most commonly used training protocol in MARL. We empirically show that the agents trained in our setup are able to coordinate well with unknown agents, without any additional assumptions made by previous works. Key words: multi-agent reinforcement learning, lifelong learning.
16

Differentiable best response shaping

Aghajohari, Milad 07 1900 (has links)
Cette thèse est structurée en quatre sections. La première constitue une introduction au problème de la formation d'agents coopératifs non exploitables dans les jeux à somme non nulle. La deuxième section, soit le premier chapitre, fournit le contexte nécessaire pour discuter de l'étendue et des outils mathématiques requis pour explorer ce problème. La troisième section, correspondant au deuxième chapitre, expose un cadre spécifique, nommé Best Response Shaping, que nous avons élaboré pour relever ce défi. La quatrième section contient les conclusions que nous tirons de ce travail et nous y discutons des travaux futurs potentiels. Le chapitre introductif se divise en quatre sections. Dans la première, nous présentons le cadre d'apprentissage par renforcement (Reinforcement Learning) afin de formaliser le problème d'un agent interagissant avec l'environnement pour maximiser une récompense scalaire. Nous introduisons ensuite les Processus Décisionnels de Markov (Markov Decision Processes) en tant qu'outil mathématique pour formaliser le problème d'apprentissage par renforcement. Nous discutons de deux méthodes générales de solution pour résoudre le problème d'apprentissage par renforcement. Les premières sont des méthodes basées sur la valeur qui estiment la récompense cumulée optimale réalisable pour chaque paire action-état, et la politique serait alors apprise. Les secondes sont des méthodes basées sur les politiques où la politique est optimisée directement sans estimer les valeurs. Dans la deuxième section, nous introduisons le cadre d'apprentissage par renforcement multi-agents (Multi-Agent Reinforcement Learning) pour formaliser le problème de plusieurs agents tentant de maximiser une récompense cumulative scalaire dans un environnement partagé. Nous présentons les Jeux Stochastiques comme une extension théorique du processus de décision de Markov pour permettre la présence de plusieurs agents. Nous discutons des trois types de jeux possibles entre agents en fonction de la structure de leur système de récompense. Nous traitons des défis spécifiques à l'apprentissage par renforcement multi-agents. En particulier, nous examinons le défi de l'apprentissage par renforcement profond multi-agents dans des environnements partiellement compétitifs, où les méthodes traditionnelles peinent à promouvoir une coopération non exploitable. Dans la troisième section, nous introduisons le Dilemme du prisonnier itéré (Iterated Prisoner's Dilemma) comme un jeu matriciel simple utilisé comme exemple de jouet pour étudier les dilemmes sociaux. Dans la quatrième section, nous présentons le Coin Game comme un jeu à haute dimension qui doit être résolu grâce à des politiques paramétrées par des réseaux de neurones. Dans le deuxième chapitre, nous introduisons la méthode Forme de la Meilleure Réponse (Best Response Shaping). Des approches existantes, comme celles des agents LOLA et POLA, apprennent des politiques coopératives non exploitables en se différenciant grâce à des étapes d'optimisation prédictives de leur adversaire. Toutefois, ces techniques présentent une limitation majeure car elles sont susceptibles d'être exploitées par une optimisation supplémentaire. En réponse à cela, nous introduisons une nouvelle approche, Forme de la Meilleure Réponse, qui se différencie par le fait qu'un adversaire approxime la meilleure réponse, que nous appelons le "détective". Pour conditionner le détective sur la politique de l'agent dans les jeux complexes, nous proposons un mécanisme de conditionnement différenciable sensible à l'état, facilité par une méthode de questions-réponses (QA) qui extrait une représentation de l'agent basée sur son comportement dans des états d'environnement spécifiques. Pour valider empiriquement notre méthode, nous mettons en évidence sa performance améliorée face à un adversaire utilisant l'Arbre de Recherche Monte Carlo (Monte Carlo Tree Search), qui sert d'approximation de la meilleure réponse dans le Coin Game. / This thesis is organized in four sections.The first is an introduction to the problem of training non-exploitable cooperative agents in general-sum games. The second section, the first chapter, provides the necessary background for discussing the scope and necessary mathematical tools for exploring this problem. The third section, the second chapter, explains a particular framework, Best Response Shaping, that we developed for tackling this challenge. In the fourth section, is the conclusion that we drive from this work and we discuss the possible future works. The background chapter consists of four section. In the first section, we introduce the \emph{Reinforcement Learning } framework for formalizing the problem of an agent interacting with the environment maximizing a scalar reward. We then introduce \emph{Markov Decision Processes} as a mathematical tool to formalize the Reinforcement Learning problem. We discuss two general solution methods for solving the Reinforcement Learning problem. The first are Value-based methods that estimate the optimal achievable accumulative reward in each action-state pair and the policy would be learned. The second are Policy-based methods where the policy is optimized directly without estimating the values. In the second section, we introduce \emph{Multi-Agent Reinforcement Learning} framework for formalizing multiple agents trying to maximize a scalar accumulative reward in a shared environment. We introduce \emph{Stochastic Games} as a theoretical extension of the Markov Decision Process to allow multiple agents. We discuss the three types of possible games between agents based on the setup of their reward structure. We discuss the challenges that are specific to Multi-Agent Reinforcement Learning. In particular, we investigate the challenge of multi-agent deep reinforcement learning in partially competitive environments, where traditional methods struggle to foster non-exploitable cooperation. In the third section, we introduce the \emph{Iterated Prisoner's Dilemma} game as a simple matrix game used as a toy-example for studying social dilemmas. In the Fourth section, we introduce the \emph{Coin Game} as a high-dimensional game that should be solved via policies parameterized by neural networks. In the second chapter, we introduce the Best Response Shaping (BRS) method. The existing approaches like LOLA and POLA agents learn non-exploitable cooperative policies by differentiation through look-ahead optimization steps of their opponent. However, there is a key limitation in these techniques as they are susceptible to exploitation by further optimization. In response, we introduce a novel approach, Best Response Shaping (BRS), which differentiates through an opponent approximating the best response, termed the "detective." To condition the detective on the agent's policy for complex games we propose a state-aware differentiable conditioning mechanism, facilitated by a question answering (QA) method that extracts a representation of the agent based on its behaviour on specific environment states. To empirically validate our method, we showcase its enhanced performance against a Monte Carlo Tree Search (MCTS) opponent, which serves as an approximation to the best response in the Coin Game. This work expands the applicability of multi-agent RL in partially competitive environments and provides a new pathway towards achieving improved social welfare in general sum games.
17

Agent abstraction in multi-agent reinforcement learning

Memarian, Amin 06 1900 (has links)
Cette thèse est organisée en deux chapitres. Le premier chapitre sert d’introduction aux concepts et idées utilisés dans le deuxième chapitre (l’article). Le premier chapitre est divisé en trois sections. Dans la première section, nous introduisons l’apprentissage par renforcement en tant que paradigme d’apprentissage automatique et montrons comment ses problèmes sont formalisés à l’aide de processus décisionnels de Markov. Nous formalisons les buts sous forme de rendements attendus et montrons comment les équations de Bellman utilisent la formulation récursive du rendement pour établir une relation entre les valeurs de deux états successifs sous la politique de l’agent. Après cela, nous soutenons que la résolution des équations d’optimalité de Bellman est insoluble et introduisons des algorithmes basés sur des valeurs tels que la programmation dynamique, les méthodes de Monte Carlo et les méthodes de différence temporelle qui se rapprochent de la solution optimale à l’aide de l’itération de politique généralisée. L’approximation de fonctions est ensuite proposée comme moyen de traiter les grands espaces d’états. Nous discutons également de la manière dont les méthodes basées sur les politiques optimisent directement la politique sans optimiser la fonction de valeur. Dans la deuxième section, nous introduisons les jeux de Markov comme une extension des processus décisionnels de Markov pour plusieurs agents. Nous couvrons les différents cadres formés par les différentes structures de récompense et donnons les dilemmes sociaux séquentiels comme exemple du cadre d’incitation mixte. En fin de compte, nous introduisons différentes structures d’information telles que l’apprentissage centralisé qui peuvent aider à faire face à la non-stationnarité in- duite par l’adversaire. Enfin, dans la troisième section, nous donnons un bref aperçu des types d’abstraction d’état et introduisons les métriques de bisimulation comme un concept inspiré de l’abstraction de non-pertinence du modèle qui mesure la similarité entre les états. Dans le deuxième chapitre (l’article), nous approfondissons finalement l’abstraction d’agent en tant que métrique de bisimulation et dérivons un facteur de compression que nous pouvons appliquer à la diplomatie pour révéler l’agence supérieure sur les unités de joueur. / This thesis is organized into two chapters. The first chapter serves as an introduction to the concepts and ideas used in the second chapter (the article). The first chapter is divided into three sections. In the first section, we introduce Reinforcement Learning as a Machine Learning paradigm and show how its problems are formalized using Markov Decision Processes. We formalize goals as expected returns and show how the Bellman equations use the recursive formulation of return to establish a relation between the values of two successive states under the agent’s policy. After that, we argue that solving the Bellman optimality equations is intractable and introduce value-based algorithms such as Dynamic Programming, Monte Carlo methods, and Temporal Difference methods that approximate the optimal solution using Generalized Policy Iteration. Function approximation is then proposed as a way of dealing with large state spaces. We also discuss how policy-based methods optimize the policy directly without optimizing the value function. In the second section, we introduce Markov Games as an extension of Markov Decision Processes for multiple agents. We cover the different settings formed by the different reward structures and give Sequential Social Dilemmas as an example of the mixed-incentive setting. In the end, we introduce different information structures such as centralized learning that can help deal with the opponent-induced non-stationarity. Finally, in the third section, we give a brief overview of state abstraction types and introduce bisimulation metrics as a concept inspired by model-irrelevance abstraction that measures the similarity between states. In the second chapter (the article), we ultimately delve into agent abstraction as a bisimulation metric and derive a compression factor that we can apply to Diplomacy to reveal the higher agency over the player units.
18

Temporal Abstractions in Multi-agent Learning

Jiayu Chen (18396687) 13 June 2024 (has links)
<p dir="ltr">Learning, planning, and representing knowledge at multiple levels of temporal abstractions provide an agent with the ability to predict consequences of different courses of actions, which is essential for improving the performance of sequential decision making. However, discovering effective temporal abstractions, which the agent can use as skills, and adopting the constructed temporal abstractions for efficient policy learning can be challenging. Despite significant advancements in single-agent settings, temporal abstractions in multi-agent systems remains underexplored. This thesis addresses this research gap by introducing novel algorithms for discovering and employing temporal abstractions in both cooperative and competitive multi-agent environments. We first develop an unsupervised spectral-analysis-based discovery algorithm, aiming at finding temporal abstractions that can enhance the joint exploration of agents in complex, unknown environments for goal-achieving tasks. Subsequently, we propose a variational method that is applicable for a broader range of collaborative multi-agent tasks. This method unifies dynamic grouping and automatic multi-agent temporal abstraction discovery, and can be seamlessly integrated into the commonly-used multi-agent reinforcement learning algorithms. Further, for competitive multi-agent zero-sum games, we develop an algorithm based on Counterfactual Regret Minimization, which enables agents to form and utilize strategic abstractions akin to routine moves in chess during strategy learning, supported by solid theoretical and empirical analyses. Collectively, these contributions not only advance the understanding of multi-agent temporal abstractions but also present practical algorithms for intricate multi-agent challenges, including control, planning, and decision-making in complex scenarios.</p>
19

Reinforcement learning applied to the real world : uncertainty, sample efficiency, and multi-agent coordination

Mai, Vincent 12 1900 (has links)
L'immense potentiel des approches d'apprentissage par renforcement profond (ARP) pour la conception d'agents autonomes a été démontré à plusieurs reprises au cours de la dernière décennie. Son application à des agents physiques, tels que des robots ou des réseaux électriques automatisés, est cependant confrontée à plusieurs défis. Parmi eux, l'inefficacité de leur échantillonnage, combinée au coût et au risque d'acquérir de l'expérience dans le monde réel, peut décourager tout projet d'entraînement d'agents incarnés. Dans cette thèse, je me concentre sur l'application de l'ARP sur des agents physiques. Je propose d'abord un cadre probabiliste pour améliorer l'efficacité de l'échantillonnage dans l'ARP. Dans un premier article, je présente la pondération BIV (batch inverse-variance), une fonction de perte tenant compte de la variance du bruit des étiquettes dans la régression bruitée hétéroscédastique. La pondération BIV est un élément clé du deuxième article, où elle est combinée avec des méthodes de pointe de prédiction de l'incertitude pour les réseaux neuronaux profonds dans un pipeline bayésien pour les algorithmes d'ARP avec différences temporelles. Cette approche, nommée apprentissage par renforcement à variance inverse (IV-RL), conduit à un entraînement nettement plus rapide ainsi qu'à de meilleures performances dans les tâches de contrôle. Dans le troisième article, l'apprentissage par renforcement multi-agent (MARL) est appliqué au problème de la réponse rapide à la demande, une approche prometteuse pour gérer l'introduction de sources d'énergie renouvelables intermittentes dans les réseaux électriques. En contrôlant la coordination de plusieurs climatiseurs, les agents MARL obtiennent des performances nettement supérieures à celles des approches basées sur des règles. Ces résultats soulignent le rôle potentiel que les agents physiques entraînés par MARL pourraient jouer dans la transition énergétique et la lutte contre le réchauffement climatique. / The immense potential of deep reinforcement learning (DRL) approaches to build autonomous agents has been proven repeatedly in the last decade. Its application to embodied agents, such as robots or automated power systems, is however facing several challenges. Among them, their sample inefficiency, combined to the cost and the risk of gathering experience in the real world, can deter any idea of training embodied agents. In this thesis, I focus on the application of DRL on embodied agents. I first propose a probabilistic framework to improve sample efficiency in DRL. In the first article, I present batch inverse-variance (BIV) weighting, a loss function accounting for label noise variance in heteroscedastic noisy regression. BIV is a key element of the second article, where it is combined with state-of-the-art uncertainty prediction methods for deep neural networks in a Bayesian pipeline for temporal differences DRL algorithms. This approach, named inverse-variance reinforcement learning (IV-RL), leads to significantly faster training as well as better performance in control tasks. In the third article, multi-agent reinforcement learning (MARL) is applied to the problem of fast-timescale demand response, a promising approach to the manage the introduction of intermittent renewable energy sources in power-grids. As MARL agents control the coordination of multiple air conditioners, they achieve significantly better performance than rule-based approaches. These results underline to the potential role that DRL trained embodied agents could take in the energetic transition and the fight against global warming.
20

Machine Learning Algorithms for Energy Trading of Battery Energy Storage Systems : Reinforcement learning for trading energy on dual electricity markets

Haratian, Arash January 2024 (has links)
The battery energy storage system (BESS) holds the promise of becoming an essential element in our energy landscape. With the increasing need for renewable energy and electrification, a BESS serves as backup power, grid frequency balancing, and playing a crucial role in achieving 100% renewable electricity production by 2040 in Sweden. This thesis aims to study intelligent energy trading algorithms for BESS with two markets. The algorithms would allow BESS to trade simultaneously with two markets, day-ahead (energy) market and FCR-N.The problem of trading is solved using reinforcement learning (RL) particularly, multi-agent reinforcement learning (MARL), are proposed as potential solutions for learning energy trading strategies across multiple markets, addressing a gap in current research. In this study two main algorithms are used: Deep Q-networks (DQN), and Advantage Actor-Critic (A2C). These two algorithms are adapted to the MARL’s paradigms. This thesis answers three main questions. First, if any of the MARL variations of the two mentioned algorithms have any advantage over the others. The results suggest that the CTDE variation of A2C performs the best, followed by centralized variation of A2C. Second, the discrete action spaces and continuous action spaces are compared. The algorithms with continuous action spaces achieved higher revenues. The continuous action spaces let the agents decide the exact volumes of the energy to trade. This is while in the discrete action spaces the agents can only choose the volumes from a defined set of values. Third and last, the results from the experiments suggest that trading with two markets results in higher revenue than trading with one market. All the MARL algorithms have higher revenue compared to the simple hard-rule strategy designed for trading with two markets. This thesis shows that the RL and MARL algorithms can be used for creating profitable trading agents and for identifying successful trading strategies.

Page generated in 0.1224 seconds