Spelling suggestions: "subject:"multi agent atemsystem"" "subject:"multi agent systsystem""
11 |
Consensus in multi-agent systems and bilateral teleoperation with communication constraintsWu, Jian 01 March 2013 (has links)
With the advancement of communication technology, more and more control processes happen in networked environment. This makes it possible for us to deploy multiple systems in a spatially distributed way such that they could finish certain tasks collaboratively. While it brings about numerous advantages over conventional control, challenges arise in the mean time due to the imperfection of communication. This thesis is aimed to solve some problems in cooperative control involving multiple agents in the presence of communication constraints.
Overall, it is comprised of two main parts: Distributed consensus in multi-agent systems and bilateral teleoperation. Chapter 2 to Chapter 4 deal with the consensus problem in multi-agent systems. Our goal is to design appropriate control protocols such that the states of a group of agents will converge to a common value eventually. The robustness of multi-agent systems against various adverse factors in communication is our central concern. Chapter 5 copes with bilateral teleoperation with time delays. The task is to design control laws such that synchronization is reached between the master plant and slave plant. Meanwhile, transparency should be maintained within an acceptable level.
Chapter 2 investigates the consensus problem in a multi-agent system with directed communication topology. The time delays are modeled as a Markov chain, thus more characteristics of delays are taken into account. A delay-dependent approach has been proposed to design the Laplacian matrix such that the system is robust against stochastic delays. The consensus problem is converted into stabilization of its equivalent error dynamics, and the mean square stability is employed to characterize its convergence property. One feature of Chapter 2 is redesign of the adjacency matrix, which makes it possible to adjust communication weights dynamically. In Chapter 3, average consensus in single-integrator agents with time-varying delays and random data losses is studied. The interaction topology is assumed to be undirected. The communication constraints lie in two aspects: 1) time-varying delays that are non-uniform and bounded; 2) data losses governed by Bernoulli processes with non-uniform probabilities. By considering the upper bounds of delays and probabilities of packet dropouts, sufficient conditions are developed to guarantee that the multi-agent system will achieve consensus. Chapter 4 is concerned with the consensus problem with double-integrator dynamics and non-uniform sampling. The communication topology is assumed to be fixed and directed. With the adoption of time-varying control gains and the theory on stochastic matrices, we prove that when the graph has a directed spanning tree and the control gains are properly selected, consensus will be reached.
Chapter 5 deals with bilateral teleoperation with probabilistic time delays. The delays are from a finite set and each element in the set has a probability of occurrence. After defining the tracking error between the master and slave, the input-to-state stability is used to characterize the system performance. By taking into account the probabilistic information in time delays and using the pole placement technique, the teleoperation system has achieved better position tracking and enhanced transparency. / Graduate
|
12 |
Situation assessment and role selection in the simulated RoboCup domain / Situations analys och roll val i den simulerade RoboCup domänenSturesson, Johan, Sjöberg, Mattias January 2003 (has links)
In the recent world championships of the simulated RoboCup league the winning teams possessed low level behaviours, such as kick and pass, that were close to perfection. In order to improve a team's performance you will need, beside perfect low level behaviours, a good management of the team. We present a model for managing a team in the simulated RoboCup league. The model is based on techniques used by the recent winners in the league and allows you to get a well coordinated team of agents striving for a common goal. The model supports different formations in different situations, which contributes to a dynamic team play, where the players can adjust to their opponents and other factors like time left and goal difference. For example if the game is near the end and the team is loosing a more risky and aggressive tactic is chosen.
|
13 |
Multi-Agent-System till brädspelWahlström, Marco, Karlsson, Jonas January 2012 (has links)
För att ta reda på hur väl en Multi-Agent-Systems-bot kan stå sig mot andra, icke-MAS-bottar, så har vi implementerat en bot till brädspelet Arimaa. Botten är implementerad i C++ och den kan spela mot andra bottar, eller människor, genom Arimaas officiella hemsida. Syftet har varit att skapa en fullfjädrad bot som både klarar av att spela korrekt, och att spela bra. För att ta reda på om MAS är en bra designfilosofi för Arimaa så har vi utmanat ett antal av de bottar som andra människor skapat och lagt upp på hemsidan. Alla bottarna har under tiden de legat uppe blivit rankade genom tävlingar och utmaningar och flera av dessa har tävlat om stora pengar, vilket betyder att människor har lagt mycket tid på dem. Efter ett stort antal matcher mot andra bottar så har vi kommit fram till att Arimaa är ett väldigt svårt spel att koda bottar till. Vi lyckades bara slå några av de sämsta bottarna på hemsidan men MAS visar stor potential och vi tror att man kan göra väldigt avancerade bottar med det. Jämfört med de bästa bottarna så är vår väldigt snabb och minneseffektiv. Man borde absolut experimentera mer.
|
14 |
Analysis and synthesis of distributed control systems under communication constraintsChen, Yuanye 21 December 2017 (has links)
With the help of rapidly advancing communication technology, control systems
are increasingly integrated via communication networks. Networked control systems
(NCSs) bring significant advantages such as flexible and scalable structures, easy
implementation and maintenance, and efficient resources distribution and allocation.
NCSs empowers to finish some complicated tasks using some relatively simple systems
in a collaborated manner. However, there are also some challenges and constraints
subject to the imperfection of communication channels. In this thesis, the stabilization
problems and the performance limitation problems of control systems subject to
networked-induced constraints are studied.
Overall, the thesis mainly includes two parts: 1) Consensus and consensusability
of multi-agent systems (MASs); 2) Delay margins of NCSs. Chapter 2 and Chapter 3
deal with the consensus problems of MASs, which aim to properly design the control
protocols to ensure the state convergence of all the agents. Chapter 4 and Chapter 5
focus on the consensusability analysis, exploring how the dynamics of the agents and
the networked induced constraints impact the overall systems for achieving consensus.
Chapter 6 pays attention to the delay margins of discrete-time linear time-invariant
(LTI) systems, studying how the dynamics of the plants limit the time delays that
can be tolerated by LTI controllers.
In Chapter 2, the leader-following consensus problem of MASs with general linear
dynamics and arbitrary switching topologies is considered. The MAS with arbitrary
switching topologies is formulated as a switched system. Then the leaderfollowing
consensus problem is transformed to the stability problem of the corresponding
switched system. A necessary and sufficient consensus condition is derived.
The condition is also extended to MASs with time-varying delays.
In Chapter 3, the consensus problem of MASs with general linear dynamics is
studied. Motivated by the multiple-input multiple-output (MIMO) communication
technique, a general framework is considered in which different state variables are
exchanged in different independent communication topologies. This novel framework
could improve the control system design flexibility and potentially improve the system
performance. Fully distributed consensus protocols are proposed and analyzed for
the settings of fixed and switching multiple topologies. The protocols can be applied
using only local information. And the control gains can be designed depending on
the dynamics of the individual agent. By transforming the overall MASs into cascade
systems, necessary and sufficient conditions are provided to guarantee the consensus
under fixed and switching state-variables-dependent topologies, respectively.
Chapter 4 investigates the consensusability problem for MASs with time-varying
delays. The bounded delays can be arbitrarily fast time-varying. The communication
topology is assumed to be undirected and fixed. Considering general linear dynamics
under average state protocols, the consensus problem is then transformed into a
robust control problem. Sufficient frequency domain criteria are established in terms
of small-gain theorem by analyzing the delay dependent gains for both continuoustime
and discrete-time systems. The controller synthesis problems can be solved by
applying the frequency domain design methods.
The consensusablity problem of general linear MASs considering directed topologies
are explored from a frequency domain perspective in Chapter 5. By investigating
the properties of Laplacian spectra, a consensus criterion is established based on the
stability of several complex weighted closed-loop systems. Furthermore, for singleinput
MASs, frequency domain consensusability criteria are proposed on the basis of
the stability margins, which depend on the H∞ norm of the complementary sensitivity
function determined by the agents’ unstable poles. The corresponding design
procedure is also developed.
Chapter 6 studies the delay margin problem of discrete-time LTI systems. For
general LTI plants with multiple unstable poles and nonminimum phase zeros, we
employ analytic function interpolation and rational approximation techniques to derive
bounds on delay margins. Readily computable and explicit lower bounds are
found by computing the real eigenvalues of a constant matrix, and LTI controllers can
be synthesized based on the H∞ control theory to achieve the bounds. The results
can be also consistently extended to the case of systems with time-varying delays.
For first-order unstable plants, we also obtain bounds achievable by proportionalintergral-
derivative (PID) controllers, which are of interest to PID control design and
implementation. It is worth noting that unlike its continuous-time counterpart, the
discrete-time delay margin problem being considered herein constitutes a simultaneous
stabilization problem, which is known to be rather difficult. While previous work
on the discrete-time delay margin led to negative results, the bounds developed in
this chapter provide instead a guaranteed range of delays within which the delayed
plants can be robustly stabilized, and in turn solve the special class of simultaneous
stabilization problems in question.
Finally, in Chapter 7, the thesis is summarized and some future research topics
are also presented. / Graduate
|
15 |
Seniority as a Metric in Reputation Systems for E-CommerceCormier, Catherine January 2011 (has links)
In order to succeed, it is imperative that all e-commerce systems include an effective and reliable trust and reputation modeling system. This is particularly true of decentralized e-commerce systems in which autonomous software engage in commercial transactions. Many researchers have sought to overcome the complexities of modeling a subjective, human concept like trust, resulting in several trust and reputation models.
While these models each present a unique offering and solution to the problem, several issues persist. Most of the models require direct experience in the e-commerce system in order to make effective trust decisions. This leaves new agents and agents who only casually use the e-commerce system vulnerable. Additionally, the reputation ratings of agents who are relatively new to the system are often indistinguishable from scores for poorly performing agents. Finally, more tactics to defend against agents who exploit the characteristics of the open, distributed system for their own malicious needs are required.
To address these issues, a new metric is devised and presented: seniority. Based on agent age and activity level within the e-commerce system, seniority provides a means of judging the credibility of other agents with little or no prior experience in the system. As the results of experimental analysis reveals, employing a reputation model that uses seniority provides considerable value to agents who are new agents, casual buyer agents and all other purchasing agents in the e-commerce system. This new metric therefore offers a significant contribution toward the development of enhanced and new trust and reputation models for deployment in real-world distributed e-commerce environments.
|
16 |
Multi-Agent Based Settlement Generation In MinecraftEsko, Albin, Fritiofsson, Johan January 2021 (has links)
This thesis explores the uses of a multi-agent system(MAS) for procedural content generation(PCG) in the Generative Design in Minecraft (GDMC) competition. The generatorconstructed is capable of surveying the terrain and determining where to start building a roadnetwork. Extendor and connector agents build the road network used for the settlement. Aplotting agent surveys the area around the created roads for plots appropriate for buildinghouses. A house building agent then generates basic buildings on these plots. Finally afurniture agent places furniture in these buildings. The result of the thesis shows that thegenerator is capable of generating an interesting road network that is appropriate to its terrain.The buildings have potential but are lacking in form of adaptability to the current biome andbuildings are overall too similar to be interesting, causing it to get low scores in the userstudy and competition. The generator was entered to the GDMC-competition in 2021 where itplaced 17th of 20th place.
|
17 |
Multi-Agent Based Control and Reconfiguration for Restoration of Distribution Systems with Distributed GeneratorsSolanki, Jignesh M 09 December 2006 (has links)
Restoration entails the development of a plan consisting of opening or closing of switches, which is called reconfiguration. This dissertation proposes the design of a fast and efficient service restoration with a load shedding method for land-based and ship systems, considering priority of customers and several other system operating constraints. Existing methods, based on centralized restoration schemes that require a powerful central computer, may lead to a single point of failure. This research uses a decentralized scheme based on agents. A group of agents created to realize a specific goal by their interactions is called a Multi-Agent System (MAS). Agents and their behaviors are developed in Java Agent DEvelopment Framework (JADE) and the power system is simulated in the Virtual Test Bed (VTB). The large-scale introduction of Distributed Generators (DGs) in distribution systems has made it increasingly necessary to develop restoration schemes considering DG. The separation of utility causes the system to decompose into electrically isolated islands with generation and load imbalance that can have severe consequences. Automated load shedding schemes are essential for systems with DGs, since the disconnection of the utility can lead to instability much faster than an operator intervention can repair. Load shedding may be the only option to maintain the island when conditions are so severe as to require correction by restoration schemes. Few algorithms have been reported for the problem of maintaining the island, even though load shedding has been reported for power systems using underrequency and under-voltage criteria. This research proposes a new operational strategy for sudden generator-load imbalance due to loss of utility that dynamically calculates the quantity of load to be shed for each island and the quantity of load that can be restored. Results presented in this dissertation are among the first to demonstrate a state-of-the-art MAS for load shedding under islanded conditions and restoration of the shed loads. The load shedding and restoration schemes developed here have behaviors that can incorporate most of the distribution topologies. Achieving service restoration with DG is complicated but new automated switch technologies and communications make MAS a better scheme than existing schemes.
|
18 |
JiVE: JAFMAS INTEGRATED VISUAL ENVIRONMENTGALAN, ALAN KEITH January 2000 (has links)
No description available.
|
19 |
An Effective Communication Framework For Inter-Agent Communication In a Complex Adaptive System With Application To BiologySinghal, Ankit 20 December 2006 (has links)
Multi-Agent Systems (MASs) and Partial and Ordinary Differential Equations (PDEs and ODEs respectively) have often been employed by researchers to effectively model and simulate Complex Adaptive Systems (CASs). PDEs and ODEs are reduction based approaches which view the system globally and ignore any local interactions and processes. MASs are considered by many to be a better tool to model CASs, but have issues as well. Case in point, there is concern that present day MASs fail to capture the true essence of inter-cellular communication in a CAS. In this work we present a realistic and utilizable communication framework for inter-agent communication for a CAS simulation. We model the dynamic properties of the communication signals and show that our model is a realistic model for inter-cellular communication. We validate our system by modeling and simulating pattern formation in Dictyostelium discoideum, a unicellular organism. / Master of Science
|
20 |
Contributions à la résolution du transport à la demande fondées sur les systèmes multi-agents / Contributions to on-demand transport resolution based on multi-agent systemsMalas, Anas 18 May 2017 (has links)
Cette thèse porte sur le problème du transport à la demande (TAD). Nous proposons trois approches décentralisées basées sur les systèmes multi-agents pour résoudre ce problème. La première approche multi-agent utilise l'algorithme A* afin de trouver une solution optimale dans un réseau routier caractérisé par des vitesses de voyage constantes. Des expérimentations sont effectuées sur le réseau routier d'une ville libanaise appelée Tripoli et de bons résultats sont obtenus. Cependant, dans une ville comme Tripoli, les vitesses de voyage dépendent fortement de la situation dynamique du trafic routier. Pour cette raison, la deuxième approche multi-agent massif vient remédier à la première en tenant compte de l'évolution du trafic. Le réseau routier est considéré comme dynamique déterministe. Il se caractérise par des vitesses de voyages dépendantes de la situation habituelle du trafic. Ces vitesses sont pré-calculées en se basant sur des connaissances historiques du trafic routier. Les résultats expérimentaux montrent que le nombre de clients insatisfaits est supérieur à 50 % si les vitesses sont considérées comme constantes. Or, les connaissances historiques ne suffisent pas pour refléter la situation réelle du trafic surtout en cas d'apparition d'un événement imprévu tel qu'un accident sur le réseau. Pour cela, une troisième approche multi-agent massif auto-organisé est proposée. Le réseau routier est considéré comme dynamique stochastique caractérisé par des vitesses de voyage dépendantes de la situation réelle du trafic. Cette approche représente l'organisation dynamique du trafic à son échelle en se basant sur des connaissances historiques du trafic et sur des informations du trafic en temps réel. Les trajectoires des véhicules et leurs durées sont calculées et recalculées en ligne à chaque fois qu'un événement imprévu perturbe la situation habituelle du trafic. Les résultats expérimentaux montrent que jusqu'à 39 % des clients seront insatisfaits si un accident routier n'est pas considéré durant le traitement de leurs demandes. Autrement, 50 % à 100 % de ces clients sont satisfaits. / This thesis addresses the problem of on-demand transport (ODT). We propose three decentralized approaches based on multi-agent systems to solve this problem. The first multi-agent approach uses the algorithm A* in order to find an optimal solution in a road network characterized by constant travel speeds. Experiments are carried out on the road network of a Lebanese city called Tripoli and good results are obtained. However, in a city like Tripoli, travel speeds depend heavily on the dynamic situation of road traffic. For this reason, the second multi-agent approach massif comes to remedy the first taking into account the evolution of traffic. The road network is considered as dynamic deterministic. It is characterized by travel speeds dependent on the usual traffic situation. These speeds are pre-calculated on the basis of historical knowledge of road traffic. The experimental results show that the number of dissatisfied customers is greater than 50 % if the speeds are considered to be constant. Nevertheless, historical knowledge is not sufficient to reflect the actual traffic situation, especially in case of an unexpected event (such as an accident) occurring on the network. For this, a self-organized massive multi-agent approach is proposed. The road network is considered as a dynamic stochastic characterized by travel speeds dependent on the actual traffic situation. This approach represents the dynamic organization of traffic on its scale based on historical traffic knowledge and real-time traffic information. Vehicle trajectories and their durations are calculated and recalculated online whenever an unexpected event disrupts the usual traffic situation. The experimental results show that up to 39 % of customers will be dissatisfied if a road accident is not considered during the processing of their demands. Otherwise, 50 % to 100 % of these customers are satisfied.
|
Page generated in 0.1036 seconds