Spelling suggestions: "subject:"multi body lemsystems"" "subject:"multi body atemsystems""
1 |
Rám přívěsu Variant pro přepravu kabelových cívek / Trailer frame VARIANT for transport cabel spoolsBuchta, Vladislav January 2010 (has links)
Thesis deals with the truck frame VARIANT 252. The main task is to analyze weighting states, setting the values for weigting states. Strength control of the frame by using the Finite Element Method (FEM). And each subsequent frame adjustments based on the results of FEM. Part of this thesis is also the drawing documentation provided a modified frame assembly and each modified components.
|
2 |
Thrust Vector Control of Multi-Body Systems Subject to ConstraintsNguyen, Tâm Willy 11 December 2018 (has links) (PDF)
This dissertation focuses on the constrained control of multi-body systems which are actuated by vectorized thrusters. A general control framework is proposed to stabilize the task configuration while ensuring constraints satisfaction at all times. For this purpose, the equations of motion of the system are derived using the Euler-Lagrange method. It is seen that under some reasonable conditions, the system dynamics are decoupled. This property is exploited in a cascade control scheme to stabilize the points of equilibrium of the system. The control scheme is composed of an inner loop, tasked to control the attitude of the vectorized thrusters, and an outer loop which is tasked to stabilize the task configuration of the system to a desired configuration. To prove stability, input-to-state stability and small gain arguments are used. All stability properties are derived in the absence of constraints, and are shown to be local. The main result of this analysis is that the proposed control scheme can be directly applied under the assumption that a suitable mapping between the generalized force and the real inputs of the system is designed. This thesis proposes to enforce constraints by augmenting the control scheme with two types of Reference Governor units: the Scalar Reference Governor, and the Explicit Reference Governor. This dissertation presents two case studies which inspired the main generalization of this thesis: (i) the control of an unmanned aerial and ground vehicle manipulating an object, and (ii) the control of a tethered quadrotor. Two further case studies are discussed afterwards to show that the generalized control framework can be directly applied when a suitable mapping is designed. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
3 |
A Unified Geometric Framework for Kinematics, Dynamics and Concurrent Control of Free-base, Open-chain Multi-body Systems with Holonomic and Nonholonomic ConstraintsChhabra, Robin 18 July 2014 (has links)
This thesis presents a geometric approach to studying kinematics, dynamics and controls of open-chain multi-body systems with non-zero momentum and multi-degree-of-freedom joints subject to holonomic and nonholonomic constraints. Some examples of such systems appear in space robotics, where mobile and free-base manipulators are developed. The proposed approach introduces a unified framework for considering holonomic and nonholonomic, multi-degree-of-freedom joints through: (i) generalization of the product of exponentials formula for kinematics, and (ii) aggregation of the dynamical reduction theories, using differential geometry. Further, this framework paves the ground for the input-output linearization and controller design for concurrent trajectory tracking of base-manipulator(s).
In terms of kinematics, displacement subgroups are introduced, whose relative configuration manifolds are Lie groups and they are parametrized using the exponential map. Consequently, the product of exponentials formula for forward and differential kinematics is generalized to include multi-degree-of-freedom joints and nonholonomic constraints in open-chain multi-body systems.
As for dynamics, it is observed that the action of the relative configuration manifold corresponding to the first joint of an open-chain multi-body system leaves Hamilton's equation invariant. Using the symplectic reduction theorem, the dynamical equations of such systems with constant momentum (not necessarily zero) are formulated in the reduced phase space, which present the system dynamics based on the internal parameters of the system.
In the nonholonomic case, a three-step reduction process is presented for nonholonomic Hamiltonian mechanical systems. The Chaplygin reduction theorem eliminates the nonholonomic constraints in the first step, and an almost symplectic reduction procedure in the unconstrained phase space further reduces the dynamical equations. Consequently, the proposed approach is used to reduce the dynamical equations of nonholonomic open-chain multi-body systems.
Regarding the controls, it is shown that a generic free-base, holonomic or nonholonomic open-chain multi-body system is input-output linearizable in the reduced phase space. As a result, a feed-forward servo control law is proposed to concurrently control the base and the extremities of such systems. It is shown that the closed-loop system is exponentially stable, using a proper Lyapunov function. In each chapter of the thesis, the developed concepts are illustrated through various case studies.
|
4 |
Matematické modelování mechanických systémů vozidel / Mathematical modeling of mechanical systems of vehiclesZháňal, Lubor January 2008 (has links)
This thesis deals with design and implementation of the computing system, which would allow interactive simulation of kinematics and dynamics of vehicle mechanical systems or general mechanisms with the help of modern computer technology. In the thesis is described a basic working principle, optimization of numerical simulation parameters, as well as the implementation itself in the form of functional application and its key parts. Described are also possibilities for the use of virtual reality devices in conjunction with visualization of simulation process. Final comparative tests have confirmed the functionality and high performance of the created system.
|
5 |
Dynamics of a Small Autonomous Underwater Vehicle That Tows a Large PayloadKepler Jr, Michael Eugene 24 August 2018 (has links)
This thesis presents the derivation of the dynamic model of an autonomous underwater vehicle that tows a large payload. Our analysis is motivated by the fact that the payload is so large that it cannot be modeled by simply appending its dynamics to the dynamics of the autonomous underwater vehicle. Hence, the coupling between the vehicle and payload must be fully modeled. Furthermore, several approximation techniques based on analytic and empirical formulations are investigated for computing the hydrodynamic coefficients of the vehicle. Efficacy and limitations of the approximation techniques are assessed by comparison with hydrodynamic coefficients that are estimated using high-fidelity computational fluid dynamics simulations. / Master of Science / This thesis presents the model to used to predict the motion of an autonomous underwater vehicle that tows a large object. Our analysis is motivated by the fact that the size of the object is so large that it will have a substantial impact on the motion of the vehicle, and likewise the vehicle will have a substantial impact on the object, requiring that the interaction between the two bodies to be fully modeled. The fluid forces and moments acting on the vehicle are approximated using techniques from hydrodynamic theory and experimental results. The accuracy of the approximation is assessed by comparing of the estimated forces and moments with those seen in high-fidelity simulations.
|
6 |
Um método de elementos de contorno do domínio do tempo para análise de comportamento no mar de sistemas oceânicos. / A time-domain boundary elements method for the seakeeping analysis of offshore systems.Watai, Rafael de Andrade 03 December 2014 (has links)
Esta tese apresenta o desenvolvimento de um método de elementos de contorno (BEM) no domínio do tempo baseado em fontes de Rankine para analise linear de comportamento no mar de sistemas oceânicos. O método e formulado por dois problemas de valor inicial de contorno definidos para os potenciais de velocidade e aceleração, sendo este ultimo utilizado para calcular de maneira acurada a derivada temporal do potencial de velocidades. Testes de verificação são realizados para a solução dos problemas de difração, radiação e de corpo livre para flutuar. Uma vez verificada, a ferramenta e aplicada em dois problemas multicorpos considerados no estado-da-arte em termos de modelagem hidrodinâmica utilizando BEM. O primeiro trata do problema envolvendo duas embarcações atracadas a contrabordo. Este é um caso no qual os códigos baseados na teoria de escoamento potencial são conhecidos por apresentarem dificuldades na determinação das soluções, tendendo a superestimar as elevações de onda no vão entre as embarcações e a apresentar problemas de convergência numérica associados a efeitos ressonantes de onda. O problema e tratado por meio do método de damping lid e a convergência das series temporais e investigada avaliando diferentes níveis de amortecimento. Os resultados são comparados com dados experimentais. O segundo problema se refere a analise de sistemas multicorpos com grandes deslocamentos relativos. Neste problema, ferramentas no domínio da frequência nao podem ser utilizadas, por considerarem apenas malhas fixas. Deste modo, o presente método e estendido para considerar um gerador de malhas de paineis e um algoritmo de interpolação de ordem alta no laco de tempo do código, possibilitando a mudança de posições relativas entre os corpos durante a simulação. Os resultados são comparados com dados de experimentos executados especificamente para fins de verificação do código, apresentando uma boa concordância. De acordo com o conhecimento do autor, esta e a primeira vez que certas questões relativas a modelagem numérica destes dois problemas multicorpos são relatadas na literatura especializada em hidrodinâmica computacional. / The development of a time domain boundary elements method (BEM) based on Rankine\'s sources for linear seakeeping analysis of offshore systems is here addressed. The method is formulated by means of two Initial Boundary Value Problems defined for the velocity and acceleration potentials, the latter being used to ensure an accurate calculation of the time derivatives of the velocity potential. Verification tests for solving the difraction, radiation and free floating problems are presented. Once verified, the code is applied for two complex multi-body problems considered to be in the state-of-the-art for hydrodynamic modelling using BEM. The first is the seakeeping problem of two ships arranged in side-by-side, a problem in which all potential flow codes are known to have a poor performance, tending to provide unrealistic high wave elevations in the gap between the vessels and to present numerical convergence problems associated to resonant effects. The problem is here addressed by means of a damping lid method and the convergence of the time series with different damping levels is investigated. Results are compared to data measured in an experimental campaign. The second problem refers to the analysis of multi-body systems composed of bodies undergoing large relative displacements. This is a case that cannot be properly analyzed by frequency domain codes, since they only consider fixed meshes. For this application, the present numerical method is extended to consider a panel mesh generator in the time loop of the code, enabling the change of body relative positions during the computations. Furthermore, a higher order interpolation algorithm designed to recover the solutions of a previous time-step was also implemented, enabling the calculations to progress with reasonable accuracy in time. The numerical results are compared to data of experimental tests designed and executed for verification of the code, and presented a very good agreement. To the author\'s knowledge, this is the first time that certain issues concerning the numerical modelling of these two complex multi-body problems are reported in the literature specialized in hydrodynamic computations.
|
7 |
A New Insight Into Recursive Forward Dynamics Algorithm And Simulation Studies Of Closed Loop SystemsDeepak, R Sangamesh 06 1900 (has links)
Rigid multibody systems have been studied extensivley due to its direct application in design and analysis of various mechanical systems such as robots and spacecraft structures. The dynamics of multibody system is governed by its equations of motion and various terms associated with it, such as the mass matrix, the generalized force vector, are well known..Forward dynamics algorithms play an important role in the simulation of multibody systems and the recursive forward dynamics algorithm for branched multibody systems is very popular. The recursive forward dynamic algorithm is highly efficient algorithm with O(n) computational complexity and scores over other algorithms when number of rigid bodies n in the system is very large. The algorithm involves finding an important mass matrix, which has been popularly termed as articulated body inertia (AB inertia). To find ijth term of any general mass matrix, we separately give virtual change to ith and jth generalized coordinates. At each point of the multibody system, the dot product of the resulting virtual displacements are taken with each other and eventually integrated over the entire multibody system, weighted by the mass. This quantity divided by the virtual changes in ith and jth coordinates gives the ijth element of the mass matrix. This is one of the fundamental ways of looking at the mass matrix. However, in literature, the AB inertia is obtained as a result of mathematical manipulation and its physical or geometrical significance from the above view point is not clear.
In this thesis we present a more geometric and physical explanation for the AB inertia. The main step is to obtain a new set of generalized coordinates which relate directly to the AB inertia. We have also shown the equivalence of our method with existing methods. A comprehensive treatement on change of generalized coordinates and its effect on equations of motion has also been presented as preliminaries.
The second part of the thesis deals with closed loop multibody systems.A few years ago an iterative algorithm called the sequential regularization method (SRM) was proposed for simulation of closed loop multibody systems with attractive claims on its efficiency. In literature we find that this algorithm has been implemented and studied only for planar multibody systems. As a part of the thesis work, we have developed a C-programming language code which can simulate 3-dimensional spatial multibody systems using the SRM algorithm. The programme can also perform simulation using a relatively efficient Conventional algorithm having O(n+m3) complexity, where m denotes number of closed loop constraints. Simulation studies have been carried out on a few multibody systems using the two algorithms. Some of the results have been also been validated using the commercial simulation package -ADAMS. As a result of our simulation studies, we have detected certain points, after which the solution from SRM loses it convergence. More study is required to understand this lack of convergence.
|
8 |
Um método de elementos de contorno do domínio do tempo para análise de comportamento no mar de sistemas oceânicos. / A time-domain boundary elements method for the seakeeping analysis of offshore systems.Rafael de Andrade Watai 03 December 2014 (has links)
Esta tese apresenta o desenvolvimento de um método de elementos de contorno (BEM) no domínio do tempo baseado em fontes de Rankine para analise linear de comportamento no mar de sistemas oceânicos. O método e formulado por dois problemas de valor inicial de contorno definidos para os potenciais de velocidade e aceleração, sendo este ultimo utilizado para calcular de maneira acurada a derivada temporal do potencial de velocidades. Testes de verificação são realizados para a solução dos problemas de difração, radiação e de corpo livre para flutuar. Uma vez verificada, a ferramenta e aplicada em dois problemas multicorpos considerados no estado-da-arte em termos de modelagem hidrodinâmica utilizando BEM. O primeiro trata do problema envolvendo duas embarcações atracadas a contrabordo. Este é um caso no qual os códigos baseados na teoria de escoamento potencial são conhecidos por apresentarem dificuldades na determinação das soluções, tendendo a superestimar as elevações de onda no vão entre as embarcações e a apresentar problemas de convergência numérica associados a efeitos ressonantes de onda. O problema e tratado por meio do método de damping lid e a convergência das series temporais e investigada avaliando diferentes níveis de amortecimento. Os resultados são comparados com dados experimentais. O segundo problema se refere a analise de sistemas multicorpos com grandes deslocamentos relativos. Neste problema, ferramentas no domínio da frequência nao podem ser utilizadas, por considerarem apenas malhas fixas. Deste modo, o presente método e estendido para considerar um gerador de malhas de paineis e um algoritmo de interpolação de ordem alta no laco de tempo do código, possibilitando a mudança de posições relativas entre os corpos durante a simulação. Os resultados são comparados com dados de experimentos executados especificamente para fins de verificação do código, apresentando uma boa concordância. De acordo com o conhecimento do autor, esta e a primeira vez que certas questões relativas a modelagem numérica destes dois problemas multicorpos são relatadas na literatura especializada em hidrodinâmica computacional. / The development of a time domain boundary elements method (BEM) based on Rankine\'s sources for linear seakeeping analysis of offshore systems is here addressed. The method is formulated by means of two Initial Boundary Value Problems defined for the velocity and acceleration potentials, the latter being used to ensure an accurate calculation of the time derivatives of the velocity potential. Verification tests for solving the difraction, radiation and free floating problems are presented. Once verified, the code is applied for two complex multi-body problems considered to be in the state-of-the-art for hydrodynamic modelling using BEM. The first is the seakeeping problem of two ships arranged in side-by-side, a problem in which all potential flow codes are known to have a poor performance, tending to provide unrealistic high wave elevations in the gap between the vessels and to present numerical convergence problems associated to resonant effects. The problem is here addressed by means of a damping lid method and the convergence of the time series with different damping levels is investigated. Results are compared to data measured in an experimental campaign. The second problem refers to the analysis of multi-body systems composed of bodies undergoing large relative displacements. This is a case that cannot be properly analyzed by frequency domain codes, since they only consider fixed meshes. For this application, the present numerical method is extended to consider a panel mesh generator in the time loop of the code, enabling the change of body relative positions during the computations. Furthermore, a higher order interpolation algorithm designed to recover the solutions of a previous time-step was also implemented, enabling the calculations to progress with reasonable accuracy in time. The numerical results are compared to data of experimental tests designed and executed for verification of the code, and presented a very good agreement. To the author\'s knowledge, this is the first time that certain issues concerning the numerical modelling of these two complex multi-body problems are reported in the literature specialized in hydrodynamic computations.
|
9 |
Enhanced loaded tooth contact analysis of hypoid gears within a multi-body-system simulationWagner, Wolf, Schumann, Stefan, Schlecht, Berthold 19 April 2024 (has links)
To calculate the load capacity of gear stages within complex drivetrains under varying external loads, multi-body-systems (MBS) are used to simulate the vibrational behaviour of integral systems. In order to model a flexible hypoid gear stage, methods like the modal reduction of FEM-models were already introduced. However, the modelling of such systems is complex, challenging and sensitive to its discretisation. The co-simulation within a multi-body-system simulation offers the possibility to outsource the calculation of the tooth contact and therefore the reaction forces under consideration of friction. This leads to a simplification and an improvement of the modelling of gear stages in multi-body-systems.
The further developed co-simulation module offers a compromise between computational speeds and exact solutions. To improve the quality of the results and reduce the calculation time the load distribution calculation is investigated specifically. The article describes a method to reduce fluctuations of computed reaction forces and moments during gear movement. The aim is to keep the level of fluctuations of a high contact zone discretisation with a significant smaller contact point count. / Um die Belastbarkeit von Getriebestufen innerhalb komplexer Antriebsstränge unter variierenden äußeren Lasten zu berechnen, werden Mehrkörpersysteme (MKS) zur Simulation des Schwingungsverhaltens von integralen Systemen eingesetzt. Um eine flexible Getriebestufe mit Kegel- oder Hypoidradsätzen zu modellieren, wurden bereits Methoden wie die modale Reduktion von FEM-Modellen eingeführt. Die Modellierung solcher Systeme ist jedoch komplex, anspruchsvoll und empfindlich gegenüber ihrer Diskretisierung. Die Co-Simulation innerhalb einer Mehrkörpersystem-Simulation bietet die Möglichkeit, die Berechnung des Zahnkontakts und damit der Reaktionskräfte unter Berücksichtigung der Reibung auszulagern. Dies führt zu einer Vereinfachung und Verbesserung der Modellierung von Getriebestufen in Mehrkörpersystemen.
Das weiterentwickelte Co-Simulations-Modul bietet einen Kompromiss zwischen Berechnungsgeschwindigkeit und exakten Lösungen. Um die Qualität der Ergebnisse zu verbessern und die Berechnungsgeschwindigkeit zu erhöhen, wurde die Berechnung der Lastverteilung untersucht. Der Artikel beschreibt eine Methode zur Reduzierung von Schwankungen der berechneten Kräfte und Momente über der Eingriffsstrecke. Ziel ist es, die Schwankungen auf dem Level einer hohen Kontaktzonendiskretisierung mit einer deutlich geringeren Kontaktpunktanzahl zu halten.
|
10 |
Active Vibration Control of Multibody Systems : Application to Automotive DesignOlsson, Claes January 2005 (has links)
<p>Active vibration control to reduce vibrations and structure borne noise is considered using a powerful multi-disciplinary virtual design environment which enables control system design to be considered as an integral part of the overall vehicle design.</p><p>The main application studied is active automotive engine vibration isolation where, first, the potential of large frequency band multi-input multi-output H<sub>2</sub> feedback control is considered. Facilitated by the virtual environment, it is found necessary to take non-linear characteristics into account to achieve closed-loop stability.</p><p>A physical explanation to why receiver structure flexibility insignificantly affect the open and closed-loop characteristics in case of total force feedback in contrast to acceleration feedback is then given. In this context, the inherent differences between model order reduction by modal and by balanced truncation are being stressed.</p><p>Next, applying state-of-the-art algorithms for recursive parameter estimation, time-domain adaptive filtering is shown to lack sufficient tracking performance to deal with multiple spectral components of transient engine excitations corresponding to rapid car accelerations.</p><p>Finally, plant non-linearity as well as transient excitation are successfully handled using narrow band control based on feedback of disturbance states estimates. To deal with the non-linear characteristics, an approach to generate linear parameter varying descriptions of non-linear systems is proposed. Parameter dependent quadratic stability is assessed using a derived affine closed-loop system representation.</p><p>This thesis also considers actuator saturation induced limit cycles for observer-based state feedback control systems encountered when dealing with the active isolation application. It is stressed that the fundamental observer-based anti-windup technique could imply severely deteriorated closed-loop characteristics and even sustained oscillations. That is in the case when the observer is fed by the saturated control signal in contrast to the computed one. Based on piecewise affine system descriptions, analytical tools to conclude about limit cycles and exponential closed-loop stability are provided for the two observer implementations.</p>
|
Page generated in 0.0759 seconds