• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 16
  • 12
  • 7
  • 6
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 135
  • 135
  • 69
  • 39
  • 30
  • 29
  • 24
  • 23
  • 22
  • 20
  • 19
  • 17
  • 17
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Probabilistic Topologies with Applications in Security and Resilience of Multi-Robot Systems

Wehbe, Remy 12 July 2021 (has links)
Multi-robot systems (MRSs) have gained significant momentum as of late in the robotics community as they find application in tasks such as unknown environment exploration, distributed surveillance, and search and rescue. Operating robot teams in real world environments introduces a notion of uncertainty into the system, especially when it comes to the ability of the MRS to reliably communicate. This poses a significant challenge as a stable communication topology is the backbone of the team's ability to coordinate. Additionally, as these systems continue to evolve and integrate further into our society, a growing threat of adversarial attackers pose the risk of compromising nominal operation. As such, this dissertation aims to model the effects of uncertainty in communication on the topology of the MRS using a probabilistic interaction model. More specifically we are interested in studying a probabilistic perspective to those topologies that pertain to the security and resilience of an MRS against adversarial attacks. Having a model that is capable of capturing how probabilistic topologies may evolve over time is essential for secure and resilient planning under communication uncertainty. As a result, we develop probabilistic models, both exact and approximate, for the topological properties of system left-invertibility and (r, s)-robustness that respectively characterize the security and resilience of an MRS. In our modeling, we use binary decision diagrams, convolutional neural networks, matroid theory and more to tackle the problems related to probabilistic security and resilience where we find exact solutions, calculate bounds, solve optimization problems, and compute informative paths for exploration. / Doctor of Philosophy / When robots coordinate and interact together to achieve a collaborative task as a team, we obtain what is known as a multi-robot system or MRS for short. MRSs have several advantages over single robots. These include reliability through redundancy, where several robots can perform a given task in case one of the robots unexpectedly fails. The ability to work faster and more efficiently by working in parallel and at different locations. And taking on more complex tasks that can be too demanding for a single robot to complete. Unfortunately, the advantages of MRSs come at a cost, they are generally harder to coordinate, the action of one robot often depends on the action of other robots in the system, and they are more vulnerable to being attacked or exploited by malicious attackers who want to disrupt nominal operation. As one would expect, communication plays a very important roles in coordinating a team of robots. Unfortunately, robots operating in real world environments are subject to disturbances such as noise, obstacles, and interference that hinders the team's ability to effectively exchange information. In addition to being crucial in coordination, effective information exchange plays a major role in detecting and avoiding adversarial robots. Whenever misinformation is being spread in the team, the best way to counter such adversarial behavior is to communicate with as much well-behaving robots as possible to identity and isolate inconsistencies. In this dissertation we try to study how uncertainty in communication affects a system's ability to detect adversarial behavior, and how we can model such a phenomenon to help us account for these uncertainties when designing secure and resilient multi-robot systems.
92

Parsimonious, Risk-Aware, and Resilient Multi-Robot Coordination

Zhou, Lifeng 28 May 2020 (has links)
In this dissertation, we study multi-robot coordination in the context of multi-target tracking. Specifically, we are interested in the coordination achieved by means of submodular function optimization. Submodularity encodes the diminishing returns property that arises in multi-robot coordination. For example, the marginal gain of assigning an additional robot to track the same target diminishes as the number of robots assigned increases. The advantage of formulating coordination problems as submodular optimization is that a simple, greedy algorithm is guaranteed to give a good performance. However, often this comes at the expense of unrealistic models and assumptions. For example, the standard formulation does not take into account the fact that robots may fail, either randomly or due to adversarial attacks. When operating in uncertain conditions, we typically seek to optimize the expected performance. However, this does not give any flexibility for a user to seek conservative or aggressive behaviors from the team of robots. Furthermore, most coordination algorithms force robots to communicate at each time step, even though they may not need to. Our goal in this dissertation is to overcome these limitations by devising coordination algorithms that are parsimonious in communication, allow a user to manage the risk of the robot performance, and are resilient to worst-case robot failures and attacks. In the first part of this dissertation, we focus on designing parsimonious communication strategies for target tracking. Specifically, we investigate the problem of determining when to communicate and who to communicate with. When the robots use range sensors, the tracking performance is a function of the relative positions of the robots and the targets. We propose a self-triggered communication strategy in which a robot communicates its own position with its neighbors only when a certain set of conditions are violated. We prove that this strategy converges to the optimal robot positions for tracking a single target and in practice, reduces the number of communication messages by 30%. When tracking multiple targets, we can reduce the communication by forming subsets of robots and assigning one subset to track a target. We investigate a number of measures for tracking quality based on the observability matrix and show which ones are submodular and which ones are not. For non-submodular measures, we show a greedy algorithm gives a 1/(n+1) approximation, if we restrict the subset to n robots. In optimizing submodular functions, a common assumption is that the function value is deterministic, which may not hold in practice. For example, the sensor performance may depend on environmental conditions which are not known exactly. In the second part of the dissertation, we design an algorithm for stochastic submodular optimization. The standard formulation for stochastic optimization optimizes the expected performance. However, the expectation is a risk-neutral measure. Instead, we optimize the Conditional Value-at-Risk (CVaR), which allows the user the flexibility of choosing a risk level. We present an algorithm, based on the greedy algorithm, and prove that its performance has bounded suboptimality and improves with running time. We also present an online version of the algorithm to adapt to real-time scenarios. In the third part of this dissertation, we focus on scenarios where a set of robots may fail naturally or due to adversarial attacks. Our objective is to track as many targets as possible, a submodular measure, assuming worst-case robot failures. We present both centralized and distributed resilient tracking algorithms to cope with centralized and distributed communication settings. We prove these algorithms give a constant-factor approximation of the optimal in polynomial running time. / Doctor of Philosophy / Today, robotics and autonomous systems have been increasingly used in various areas such as manufacturing, military, agriculture, medical sciences, and environmental monitoring. However, most of these systems are fragile and vulnerable to adversarial attacks and uncertain environmental conditions. In most cases, even if a part of the system fails, the entire system performance can be significantly undermined. As robots start to coexist with humans, we need algorithms that can be trusted under real-world, not just ideal conditions. Thus, this dissertation focuses on enabling security, trustworthiness, and long-term autonomy in robotics and autonomous systems. In particular, we devise coordination algorithms that are resilient to attacks, trustworthy in the face of the uncertain conditions, and allow the long-term operation of multi-robot systems. We evaluate our algorithms through extensive simulations and proof-of-concept experiments. Generally speaking, multi-robot systems form the "physical" layer of Cyber-Physical Sytems (CPS), the Internet of Things (IoT), and Smart City. Thus, our research can find applications in the areas of connected and autonomous vehicles, intelligent transportation, communications and sensor networks, and environmental monitoring in smart cities.
93

Persistent Monitoring with Energy-Limited Unmanned Aerial Vehicles Assisted by Mobile Recharging Stations

Yu, Kevin L. January 2018 (has links)
We study the problem of planning a tour for an energy-limited Unmanned Aerial Vehicle (UAV) to visit a set of sites in the least amount of time. We envision scenarios where the UAV can be recharged along the way either by landing on stationary recharging stations or on Unmanned Ground Vehicles (UGVs) acting as mobile recharging stations. This leads to a new variant of the Traveling Salesperson Problem (TSP) with mobile recharging stations. We present an algorithm that finds not only the order in which to visit the sites but also when and where to land on the charging stations to recharge. Our algorithm plans tours for the UGVs as well as determines the best locations to place stationary charging stations. While the problems we study are NP-Hard, we present a practical solution using Generalized TSP that finds the optimal solution. If the UGVs are slower, the algorithm also finds the minimum number of UGVs required to support the UAV mission such that the UAV is not required to wait for the UGV. We present a calibration routine to identify parameters that are needed for our algorithm as well as simulation results that show the running time is acceptable for reasonably sized instances in practice. We evaluate the performance of our algorithm through simulations and proof-of-concept experiments with a fully autonomous system of one UAV and UGV. / Master of Science / Commercially available Unmanned Aerial Vehicles (UAVs), especially multi-rotor aircrafts, have a flight time of less than 30 minutes. However many UAV applications, such as surveillance, package delivery, and infrastructure monitoring, require much longer flight times. To address this problem, we present a system in which an Unmanned Ground Vehicle (UGV) can recharge the UAV during deployments. This thesis studies the problem of finding when, where, and how much to recharge the battery. We also allow for the UGV to recharge while moving from one site to another. We present an algorithm that finds the paths for the UAV and UGV to visit a set of points of interest in the least time possible. We also present algorithms for cases when the UGV is slower than the UAV, and more than one UGV may be required. We evaluate our algorithms through simulations and proof-of-concept experiments.
94

Autonomous Navigation of a Ground Vehicle to Optimize Communication Link Quality

Bauman, Cheryl Lynn 09 January 2007 (has links)
The wireless technology of today provides combat systems with the potential to communicate mission critical data to every asset involved in the operation. In such a dynamic environment, the network must be able maintain communication by adapting to subsystems moving relative to each other. A theoretical and experimental foundation is developed that allows an autonomous ground vehicle to serve as an adaptive communication node in a larger network. The vehicle may perform other functions, but its primary role is to constantly reposition itself to maintain optimal link quality for network communication. Experimentation with existing wireless network hardware and software led to the development, implementation, and analysis of two main concepts that provided a signal optimization solution. The first attracts the communication ground vehicle to the network subsystems with weaker links using a vector summation of the signal-to-noise ratio and network subsystem position. This concept continuously generates a desired waypoint for repositioning the ground vehicle. The second concept uses a-priori GIS data to evaluate the desired vehicle waypoint determined by the vector sum. The GIS data is used primarily for evaluating the viewshed, or line-of-sight, between two network subsystems using elevation data. However, infrastructure and ground cover data are also considered in navigation planning. Both concepts prove to be powerful tools for effective autonomous repositioning for maximizing the communication link quality. / Master of Science
95

Communicating multi-UAV system for cooperative SLAM-based exploration / Système multi-UAV communicant pour l'exploration coopérative basée sur le SLAM

Mahdoui Chedly, Nesrine 07 December 2018 (has links)
Dans la communauté robotique aérienne, un croissant intérêt pour les systèmes multirobot (SMR) est apparu ces dernières années. Cela a été motivé par i) les progrès technologiques, tels que de meilleures capacités de traitement à bord des robots et des performances de communication plus élevées, et ii) les résultats prometteurs du déploiement de SMR tels que l’augmentation de la zone de couverture en un minimum de temps. Le développement d’une flotte de véhicules aériens sans pilote (UAV: Unmanned Aerial Vehicle) et de véhicules aériens de petite taille (MAV: Micro Aerial Vehicle) a ouvert la voie à de nouvelles applications à grande échelle nécessitant les caractéristiques de tel système de systèmes dans des domaines tels que la sécurité, la surveillance des catastrophes et des inondations, la recherche et le sauvetage, l’inspection des infrastructures, et ainsi de suite. De telles applications nécessitent que les robots identifient leur environnement et se localisent. Ces tâches fondamentales peuvent être assurées par la mission d’exploration. Dans ce contexte, cette thèse aborde l’exploration coopérative d’un environnement inconnu en utilisant une équipe de drones avec vision intégrée. Nous avons proposé un système multi-robot où le but est de choisir des régions spécifiques de l’environnement à explorer et à cartographier simultanément par chaque robot de manière optimisée, afin de réduire le temps d’exploration et, par conséquent, la consommation d’énergie. Chaque UAV est capable d’effectuer une localisation et une cartographie simultanées (SLAM: Simultaneous Localization And Mapping) à l’aide d’un capteur visuel comme principale modalité de perception. Pour explorer les régions inconnues, les cibles – choisies parmi les points frontières situés entre les zones libres et les zones inconnues – sont assignées aux robots en considérant un compromis entre l’exploration rapide et l’obtention d’une carte détaillée. À des fins de prise de décision, les UAVs échangent habituellement une copie de leur carte locale, mais la nouveauté dans ce travail est d’échanger les points frontières de cette carte, ce qui permet d’économiser la bande passante de communication. L’un des points les plus difficiles du SMR est la communication inter-robot. Nous étudions cette partie sous les aspects topologiques et typologiques. Nous proposons également des stratégies pour faire face à l’abandon ou à l’échec de la communication. Des validations basées sur des simulations étendues et des bancs d’essai sont présentées. / In the aerial robotic community, a growing interest for Multi-Robot Systems (MRS) appeared in the last years. This is thanks to i) the technological advances, such as better onboard processing capabilities and higher communication performances, and ii) the promising results of MRS deployment, such as increased area coverage in minimum time. The development of highly efficient and affordable fleet of Unmanned Aerial Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) of small size has paved the way to new large-scale applications, that demand such System of Systems (SoS) features in areas like security, disaster surveillance, inundation monitoring, search and rescue, infrastructure inspection, and so on. Such applications require the robots to identify their environment and localize themselves. These fundamental tasks can be ensured by the exploration mission. In this context, this thesis addresses the cooperative exploration of an unknown environment sensed by a team of UAVs with embedded vision. We propose a multi-robot framework where the key problem is to cooperatively choose specific regions of the environment to be simultaneously explored and mapped by each robot in an optimized manner in order to reduce exploration time and, consequently, energy consumption. Each UAV is able to performSimultaneous Localization And Mapping (SLAM) with a visual sensor as the main input sensor. To explore the unknown regions, the targets – selected from the computed frontier points lying between free and unknown areas – are assigned to robots by considering a trade-off between fast exploration and getting detailed grid maps. For the sake of decision making, UAVs usually exchange a copy of their local map; however, the novelty in this work is to exchange map frontier points instead, which allow to save communication bandwidth. One of the most challenging points in MRS is the inter-robot communication. We study this part in both topological and typological aspects. We also propose some strategies to cope with communication drop-out or failure. Validations based on extensive simulations and testbeds are presented.
96

Multi-Robot Motion Planning Optimisation for Handling Sheet Metal Parts

Glorieux, Emile January 2017 (has links)
Motion planning for robot operations is concerned with path planning and trajectory generation. In multi-robot systems, i.e. with multiple robots operating simultaneously in a shared workspace, the motion planning also needs to coordinate the robots' motions to avoid collisions between them. The multi-robot coordination decides the cycle-time for the planned paths and trajectories since it determines to which extend the operations can take place simultaneously without colliding. To obtain the quickest cycle-time, there needs to bean optimal balance between, on the one hand short paths and fast trajectories, and on the other hand possibly longer paths and slower trajectories to allow that the operations take place simultaneously in the shared workspace. Due to the inter-dependencies, it becomes necessary to consider the path planning, trajectory generation and multi-robot coordination together as one optimisation problem in order to find this optimal balance.This thesis focusses on optimising the motion planning for multi-robot material handling systems of sheet metal parts. A methodology to model the relevant aspects of this motion planning problem together as one multi-disciplinary optimisation problem for Simulation based Optimisation (SBO) is proposed. The identified relevant aspects include path planning,trajectory generation, multi-robot coordination, collision-avoidance, motion smoothness, end-effectors' holding force, cycle-time, robot wear, energy efficiency, part deformations, induced stresses in the part, and end-effectors' design. The cycle-time is not always the (only) objective since it is sometimes equally/more important to minimise robot wear, energy consumption, and/or part deformations. Different scenarios for these other objectives are therefore also investigated. Specialised single- and multi-objective algorithms are proposed for optimising the motion planning of these multi-robot systems. This thesis also investigates how to optimise the velocity and acceleration profiles of the coordinated trajectories for multi-robot material handling of sheet metal parts. Another modelling methodology is proposed that is based on a novel mathematical model that parametrises the velocity and acceleration profiles of the trajectories, while including the relevant aspects of the motion planning problem excluding the path planning since the paths are now predefined.This enables generating optimised trajectories that have tailored velocity and acceleration profiles for the specific material handling operations in order to minimise the cycle-time,energy consumption, or deformations of the handled parts.The proposed methodologies are evaluated in different scenarios. This is done for real world industrial case studies that consider the multi-robot material handling of a multi-stage tandem sheet metal press line, which is used in the automotive industry to produce the cars' body panels. The optimisation results show that significant improvements can be obtained compared to the current industrial practice.
97

Localização multirrobo cooperativa com planejamento / Planning for multi-robot localization

Pinheiro, Paulo Gurgel, 1983- 11 September 2018 (has links)
Orientador: Jacques Wainer / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-09-11T21:14:07Z (GMT). No. of bitstreams: 1 Pinheiro_PauloGurgel_M.pdf: 1259816 bytes, checksum: a4783df9aa3755becb68ee233ad43e3c (MD5) Previous issue date: 2009 / Resumo: Em um problema de localização multirrobô cooperativa, um grupo de robôs encontra-se em um determinado ambiente, cuja localização exata de cada um dos robôs é desconhecida. Neste cenário, uma distribuição de probabilidades aponta as chances de um robô estar em um determinado estado. É necessário então, que os robôs se movimentem pelo ambiente e gerem novas observações que serão compartilhadas, para calcular novas estimativas. Nos últimos anos, muitos trabalhos têm focado no estudo de técnicas probabilísticas, modelos de comunicação e modelos de detecções, para resolver o problema de localização. No entanto, a movimentação dos robôs é, em geral, definida por ações aleatórias. Ações aleatórias geram observações que podem ser inúteis para a melhoria da estimativa. Este trabalho apresenta uma proposta de localização com suporte a planejamento de ações. O objetivo é apresentar um modelo cujas ações realizadas pelos robôs são definidas por políticas. Escolhendo a melhor ação a ser realizada, é possível receber informações mais úteis dos sensores internos e externos e estimar as posturas mais rapidamente. O modelo proposto, denominado Modelo de Localização Planejada - MLP, utiliza POMDPs para modelar os problemas de localização e algoritmos específicos de geração de políticas. Foi utilizada a localização de Markov como técnica probabilística de localização e implementadas versões de modelos de detecção e propagação de informação. Neste trabalho, um simulador de problemas de localização multirrobô foi desenvolvido, no qual foram realizados experimentos em que o modelo proposto foi comparado a um modelo que não faz uso de planejamento de ações. Os resultados obtidos apontam que o modelo proposto é capaz de estimar as posturas dos robôs com uma menor quantidade de passos, sendo significativamente mais e ciente do que o modelo comparado sem planejamento. / Abstract: In a cooperative multi-robot localization problem, a group of robots is in a certain environment, where the exact location of each robot is unknown. In this scenario, there is only a distribution of probabilities indicating the chance of a robot to be in a particular state. It is necessary for the robots to move in the environment generating new observations, which will be shared to calculate new estimates. Currently, many studies have focused on the study of probabilistic techniques, models of communication and models of detection to solve the localization problem. However, the movement of robots is generally defined by random actions. Random actions generate observations that can be useless for improving the estimate. This work describes a proposal for multi-robot localization with support planning of actions. The objective is to describe a model whose actions performed by robots are defined by policies. Choosing the best action to be performed, the robot gets more useful information from internal and external sensors and estimates the posture more quickly. The proposed model, called Model of Planned Localization - MPL, uses POMDPs to model the problems of location and specific algorithms to generate policies. The Markov localization was used as probabilistic technique of localization and implemented versions of detection models and information propagation model. In this work, a simulator to multi-robot localization problems was developed, in which experiments were performed. The proposed model was compared to a model that does not make use of planning actions. The results showed that the proposed model is able to estimate the positions of robots with lower number of steps, being more e-cient than model compared. / Mestrado / Inteligencia Artificial / Mestre em Ciência da Computação
98

Multi-robot Coordination Control Methodology For Search And Rescue Operations

Topal, Sebahattin 01 September 2011 (has links) (PDF)
This dissertation presents a novel multi-robot coordination control algorithm for search and rescue (SAR) operations. Continuous and rapid coverage of the unstructured and complex disaster areas in search of possible buried survivors is a time critical operation where prior information about the environment is either not available or very limited. Human navigation of such areas is definitely dangerous due to the nature of the debris. Hence, exploration of unknown disaster environments with a team of robots is gaining importance day by day to increase the efficiency of SAR operations. Localization of possible survivors necessitates uninterrupted navigation of robotic aiding devices within the rubbles without getting trapped into dead ends. In this work, a novel goal oriented prioritized exploration and map merging methodologies are proposed to generate efficient multi-robot coordination control strategy. These two methodologies are merged to make the proposed methodology more realistic for real world applications. Prioritized exploration of an environment is the first important task of the efficient coordination control algorithm for multi-robots. A goal oriented and prioritized exploration approach based on a percolation model for victim search operation in unknown environments is presented in this work. The percolation model is used to describe the behavior of liquid in random media. In our approach robots start prioritized exploration beginning from regions of the highest likelihood of finding victims using percolation model inspired controller. A novel map merging algorithm is presented to increase the performance of the SAR operation in the sense of time and energy. The problem of merging partial occupancy grid environment maps which are extracted independently by individual robot units during search and rescue (SAR) operations is solved for complex disaster environments. Moreover, these maps are combined using intensity and area based features without knowing the initial position and orientation of the robots. The proposed approach handles the limitation of existing works in the literature such as / limited overlapped area between partial maps of robots is sufficient for good merging performance and unstructured partial environment maps can be merged efficiently. These abilities allow multi-robot teams to efficiently generate the occupancy grid map of catastrophe areas and localize buried victim in the debris efficiently.
99

Simultaneous cooperative exploration and networking

Kim, Jonghoek 30 March 2011 (has links)
This thesis provides strategies for multiple vehicles to explore unknown environments in a cooperative and systematic manner. These strategies are called Simultaneous Cooperative Exploration and Networking (SCENT) strategies. As the basis for development of SCENT strategies, we first tackle the motion control and planning for one vehicle with range sensors. In particular, we develop the curve-tracking controllers for autonomous vehicles with rigidly mounted range sensors, and a provably complete exploration strategy is proposed so that one vehicle with range sensors builds a topological map of an environment. The SCENT algorithms introduced in this thesis extend the exploration strategy for one vehicle to multiple vehicles. The enabling idea of the SCENT algorithms is to construct a topological map of the environment, which is considered completely explored if the map corresponds to a complete Voronoi diagram of the environment. To achieve this, each vehicle explores its local area by incrementally expanding the already visited areas of the environment. At the same time, every vehicle deploys communication devices at selected locations and, as a result, a communication network is created concurrently with a topological map. This additional network allows the vehicles to share information in a distributed manner resulting in an efficient exploration of the workspace. The efficiency of the proposed SCENT algorithms is verified through theoretical investigations as well as experiments using mobile robots. Moreover, the resulting networks and the topological maps are used to solve coordinated multi-robot tasks, such as capturing intruders.
100

Localisation Markovienne de Systèmes Mono-robot et Multi-robots Utilisant des Echantillons Auto-adaptatifs

Zhang, Lei 15 January 2010 (has links) (PDF)
Afin de parvenir à l'autonomie des robots mobiles, la localisation efficace est une condition préalable nécessaire. Le suivi de position, la localisation globale et le problème du robot kidnappé sont les trois sous-problèmes que nous étudions. Dans cette thèse, nous comparons en simulation trois algorithmes de localisation Markovienne. Nous proposons ensuite une amélioration de l'algorithme de localisation de Monte Carlo par filtre particulaire. Cet algorithme (nommé SAMCL) utilise des particules autoadaptatives. En employant une technique de pré-mise en cache pour réduire le temps de calcul en ligne, l'algorithme SAMCL est plus efficace que la méthode de Monte Carlo usuelle. En outre, nous définissons la notion de région d'énergie similaire (SER), qui est un ensemble de poses (cellules de la grille) dont l'énergie-capteur est similaire avec celle du robot dans l'espace réel. En distribuant les échantillons globaux dans SER lieu de les distribuer au hasard dans la carte, SAMCL obtient une meilleure performance dans la localisation et résout ces trois sous-problèmes. La localisation coopérative de plusieurs robots est également étudiée. Nous avons développé un algorithme (nommé PM) pour intégrer l'information de localisation échangée par les robots lors d'une rencontre au cours d'une mission commune. Cet algorithme apparaît comme une extension à l'algorithme de SAMCL et a été validé en simulation. La validité et l'efficacité de notre approche sont démontrées par des expériences sur un robot réel évoluant dans un environnement connu et préalablement cartographié.

Page generated in 0.0376 seconds