• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization and Improvements of Filtered Rayleigh Scattering Diagnostics

Patton, Randy Alexander 03 September 2013 (has links)
No description available.
2

Computational Investigations of Polymer Devolatilization Processes in Steam Contactors

Gabor, Kelly M. January 2016 (has links)
No description available.
3

Modelling multi-phase non-Newtonian flows using incompressible SPH

Xenakis, Antonios January 2016 (has links)
Non-Newtonian fluids are of great scientific interest due to their range of physical properties, which arise from the characteristic shear stress-shear rate relation for each fluid. The applications of non-Newtonian fluids are widespread and occur in many industrial (e.g. lubricants, suspensions, paints, etc.) and environmental (e.g. mud, ice, blood, etc.) problems, often involving multiple fluids. In this study, the novel technique of Incompressible Smoothed Particle Hydrodynamics (ISPH) with shifting (Lind et al., J. Comput. Phys., 231(4):1499-1523, 2012), is extended beyond the state-of-the-art to model non-Newtonian and multi-phase flows. The method is used to investigate important problems of both environmental and industrial interest. The proposed methodology is based on a recent ISPH algorithm with shifting with the introduction of an appropriate stress formulation. The new method is validated both for Newtonian and non-Newtonian fluids, in closed-channel and free-surface flows. Applications in complex moulding flows are conducted and compared to previously published results. Validation includes comparison with other computational techniques such as weakly compressible SPH (WCSPH) and the Control Volume Finite Element method. Importantly, the proposed method offers improved pressure results over state-of-the-art WCSPH methods, while retaining accurate prediction of the flow patterns. Having validated the single-phase non-Newtonian ISPH algorithm, this develops a new extension to multi-phase flows. The method is applied to both Newtonian/Newtonian and Newtonian/non-Newtonian problems. Validations against a novel semi-analytical solution of a two-phase Poiseuille Newtonian/non-Newtonian flow, the Rayleigh-Taylor instability, and a submarine landslide are considered. It is shown that the proposed method can offer improvements in the description of interfaces and in the prediction of the flow fields of demanding multi-phase flows with both environmental and industrial application. Finally, the Lituya Bay landslide and tsunami is examined. The problem is approached initially on the real length-scales and compared with state-of-the-art computational techniques. Moreover, a detailed investigation is carried out aiming at the full reproduction of the experimental findings. With the introduction of a k-ε turbulence model, a simple saturation model and correct experimental initial conditions, significant improvements over the state-of-the-art are shown, managing an accurate representation of both the landslide as well as the wave run-up. The computational method proposed in this thesis is an entirely novel ISPH algorithm capable of modelling highly deforming non-Newtonian and multi-phase flows, and in many cases shows improved accuracy and experimental agreement compared with the current state-of-the-art WCSPH and ISPH methodologies. The variety of problems examined in this work show that the proposed method is robust and can be applied to a wide range of applications with potentially high societal and economical impact.
4

A Parametric Investigation of Gas Bubble Growth and Pinch-Off Dynamics from Capillary-Tube Orifices in Liquid Pools

Kalaikadal, Deepak Saagar 08 October 2012 (has links)
No description available.
5

Modelling multi-phase flows in nuclear decommissioning using SPH

Fourtakas, Georgios January 2014 (has links)
This thesis presents a two-phase liquid-solid numerical model using Smoothed Particle Hydrodynamics (SPH). The scheme is developed for multi-phase flows in industrial tanks containing sediment used in the nuclear industry for decommissioning. These two-phase liquid-sediments flows feature a changing interfacial profile, large deformations and fragmentation of the interface with internal jets generating resuspension of the solid phase. SPH is a meshless Lagrangian discretization scheme whose major advantage is the absence of a mesh making the method ideal for interfacial and highly non-linear flows with fragmentation and resuspension. Emphasis has been given to the yield profile and rheological characteristics of the sediment solid phase using a yielding, shear and suspension layer which is needed to predict accurately the erosion phenomena. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and non-Newtonian Bingham-type constitutive models. This is supplemented by a yield criterion to predict the onset of yielding of the sediment surface and a suspension model at low volumetric concentrations of sediment solid. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. A 3-D case using more than 4 million particles, that is to the author’s best knowledge one of the largest liquid-sediment SPH simulations, is presented for the first time. The numerical model is accelerated with the use of Graphic Processing Units (GPUs), with massively parallel capabilities. With the adoption of a multi-phase model the computational requirements increase due to extra arithmetic operations required to resolve both phases and the additional memory requirements for storing a second phase in the device memory. The open source weakly compressible SPH solver DualSPHysics was chosen as the platform for both CPU and GPU implementations. The implementation and optimisation of the multi-phase GPU code achieved a speed up of over 50 compared to a single thread serial code. Prior to this thesis, large resolution liquid-solid simulations were prohibitive and 3-D simulations with millions of particles were unfeasible unless variable particle resolution was employed. Finally, the thesis addresses the challenging problem of enforcing wall boundary conditions in SPH with a novel extension of an existing Modified Virtual Boundary Particle (MVBP) technique. In contrast to the MVBP method, the extended MVBP (eMVBP) boundary condition guarantees that arbitrarily complex domains can be readily discretized ensuring approximate zeroth and first order consistency for all particles whose smoothing kernel support overlaps the boundary. The 2-D eMVBP method has also been extended to 3-D using boundary surfaces discretized into sets of triangular planes to represent the solid wall. Boundary particles are then obtained by translating a full uniform stencil according to the fluid particle position and applying an efficient ray casting algorithm to select particles inside the fluid domain. No special treatment for corners and low computational cost make the method ideal for GPU parallelization. The models are validated for a number of 2-D and 3-D cases, where significantly improved behaviour is obtained in comparison with the conventional boundary techniques. Finally the capability of the numerical scheme to simulate a dam break simulation is also shown in 2-D and 3-D.
6

A Numerical Study of Droplet Formation and Behavior using Interface Tracking Methods

Menon, Sandeep 01 September 2011 (has links)
An adaptive remeshing algorithm has been developed for multiphase flow simulations using the moving-mesh interface tracking (MMIT) technique. The edge-swapping algorithm uses the Delaunay criterion (in 2D) and a dynamic programming technique (in 3D) to maximize the quality of mesh primitives surrounding edges in the mesh, and performs local remeshing to minimize interpolation errors. Edge bisection and contraction operations are also performed to adjust the mesh resolution around important features like fluid-interfaces, driven by a local length scale estimation algorithm that is efficient and easily parallelized. Flow-field interpolation after reconnection is achieved using a conservative, second-order accurate remapping scheme that can be extended to arbitrary mesh pairs. To minimize the number of mesh reconnection operations, vertices in the mesh are also moved in a manner that optimizes the quality of cells at every time step, using a spring-analogy based Laplacian smoother for surface meshes, and an optimization-based smoothing approach for interior points. To facilitate the simulation of large-scale problems, all smoothing and reconnection algorithms in this work have been parallelized for shared- and distributed-memory paradigms. This approach allows meshes to undergo very large deformations which are characteristic of multiphase flows, and the method is versatile enough to extend its applicability to a broad range of problems including error-driven mesh refinement, reciprocating machinery, fluid-structure interation, and wing flapping simulations.
7

Modely s neostrým rozhraním v teorii směsí / Diffuse interface models in theory of interacting continua

Řehoř, Martin January 2018 (has links)
We study physical systems composed of at least two immiscible fluids occu- pying different regions of space, the so-called phases. Flows of such multi-phase fluids are frequently met in industrial applications which rises the need for their numerical simulations. In particular, the research conducted herein is motivated by the need to model the float glass forming process. The systems of interest are in the present contribution mathematically described in the framework of the so-called diffuse interface models. The thesis consists of two parts. In the modelling part, we first derive standard diffuse interface models and their generalized variants based on the concept of multi-component continuous medium and its careful thermodynamic analysis. We provide a critical assessment of assumptions that lead to different models for a given system. Our newly formulated class of generalized models of Cahn-Hilliard-Navier-Stokes-Fourier (CHNSF) type is applicable in a non-isothermal setting. Each model belonging to that class describes a mixture of separable, heat conducting Newtonian fluids that are either compressible or incompressible. The models capture capillary and thermal effects in thin interfacial regions where the fluids actually mix. In the computational part, we focus on the development of an efficient and robust...
8

Hydrodynamic Diffuse Interface Models for Cell Morphology and Motility

Marth, Wieland 05 July 2016 (has links) (PDF)
In this thesis, we study mathematical models that describe the morphology of a generalized biological cell in equilibrium or under the influence of external forces. Within these models, the cell is considered as a thermodynamic system, where streaming effects in the cell bulk and the surrounding are coupled with a Helfrich-type model for the cell membrane. The governing evolution equations for the cell given in a continuum formulation are derived using an energy variation approach. Such two-phase flow problems that combine streaming effects with a free boundary problem that accounts for bending and surface tension can be described effectively by a diffuse interface approach. An advantage of the diffuse interface approach is that models for e.g. different biophysical processes can easily be combined. That makes this method suitable to describe complex phenomena such as cell motility and multi-cell dynamics. Within the first model for cell motility, we combine a biological network for GTPases with the hydrodynamic Helfrich-type model. This model allows to account for cell motility driven by membrane protrusion as a result of actin polymerization. Within the second model, we moreover extend the Helfrich-type model by an active gel theory to account for the actin filaments in the cell bulk. Caused by contractile stress within the actin-myosin solution, a spontaneous symmetry breaking event occurs that lead to cell motility. In this thesis, we further study the dynamics of multiple cells which is of wide interest since it reveals rich non-linear behavior. To apply the diffuse interface framework, we introduce several phase field variables to account for several cells that are coupled by a local interaction potential. In a first application, we study white blood cell margination, a biological phenomenon that results from the complex relation between collisions, different mechanical properties and lift forces of red blood cells and white blood cells within the vascular system. Here, it is shown that inertial effects, which can become of relevance in various parts of the cardiovascular system, lead to a decreasing tendency for margination with increasing Reynolds number. Finally, we combine the active polar gel theory and the multi-cell approach that is capable of studying collective migration of cells. This hydrodynamic approach predicts that collective migration emerges spontaneously forming coherently-moving clusters as a result of the mutual alignment of the velocity vectors during inelastic collisions. We further observe that hydrodynamics heavily influence those systems. However, a complete suppression of the onset of collective migration cannot be confirmed. Moreover, we give a brief insight how such highly coupled systems can be treated numerically using finite elements and how the numerical costs can be limited using operator splitting approaches and problem parallelization with OPENMP. / Diese Dissertation beschäftigt sich mit mathematischen Modellen zur Beschreibung von Gleichgewichts- und dynamischen Zuständen von verallgemeinerten biologischen Zellen. Die Zellen werden dabei als thermodynamisches System aufgefasst, bei dem Strömungseffekte innerhalb und außerhalb der Zelle zusammen mit einem Helfrich-Modell für Zellmembranen kombiniert werden. Schließlich werden durch einen Energie-Variations-Ansatz die Evolutionsgleichungen für die Zelle hergeleitet. Es ergeben sie dabei Mehrphasen-Systeme, die Strömungseffekte mit einem freien Randwertproblem, das zusätzlich physikalischen Einflüssen wie Biegung und Oberflächenspannung unterliegt, vereinen. Um solche Probleme effizient zu lösen, wird in dieser Arbeit die Diffuse-Interface-Methode verwendet. Ein Vorteil dieser Methode ist, dass es sehr einfach möglich ist, Modelle, die verschiedenste Prozesse beschreiben, miteinander zu vereinen. Dies erlaubt es, komplexe biologische Phänomene, wie zum Beispiel Zellmotilität oder auch die kollektive Bewegung von Zellen, zu beschreiben. In den Modellen für Zellmotilität wird ein biologisches Netzwerk-Modell für GTPasen oder auch ein Active-Polar-Gel-Modell, das die Aktinfilamente im Inneren der Zellen als Flüssigkristall auffasst, mit dem Multi-Phasen-Modell kombiniert. Beide Modelle erlauben es, komplexe Vorgänge bei der selbst hervorgerufenen Bewegung von Zellen, wie das Vorantreiben der Zellmembran durch Aktinpolymerisierung oder auch die Kontraktionsbewegung des Zellkörpers durch kontraktile Spannungen innerhalb des Zytoskelets der Zelle, zu verstehen. Weiterhin ist die kollektive Bewegung von vielen Zellen von großem Interesse, da sich hier viele nichtlineare Phänomene zeigen. Um das Diffuse-Interface-Modell für eine Zelle auf die Beschreibung mehrerer Zellen zu übertragen, werden mehrere Phasenfelder eingeführt, die die Zellen jeweils kennzeichnen. Schließlich werden die Zellen durch ein lokales Abstoßungspotential gekoppelt. Das Modell wird angewendet, um White blood cell margination, das die Annäherung von Leukozyten an die Blutgefäßwand bezeichnet, zu verstehen. Dieser Prozess wird dabei bestimmt durch den komplexen Zusammenhang zwischen Kollisionen, den jeweiligen mechanischen Eigenschaften der Zellen, sowie deren Auftriebskraft innerhalb der Adern. Die Simulationen zeigen, dass diese Annäherung sich in bestimmten Gebieten des kardiovaskulären Systems stark vermindert, in denen die Blutströmung das Stokes-Regime verlässt. Schließlich wird das Active-Polar-Gel-Modell mit dem Modell für die kollektive Bewegung vom Zellen kombiniert. Dies macht es möglich, die kollektive Bewegung der Zellen und den Einfluss von Hydrodynamik auf diese Bewegung zu untersuchen. Es zeigt sich dabei, dass der Zustand der kollektiven gerichteten Bewegung sich spontan aus der Neuausrichtung der jeweiligen Zellen durch inelastische Kollisionen ergibt. Obwohl die Hydrodynamik einen großen Einfluss auf solche Systeme hat, deuten die Simulationen nicht daraufhin, dass Hydrodynamik die kollektive Bewegung vollständig unterdrückt. Weiterhin wird in dieser Arbeit gezeigt, wie die stark gekoppelten Systeme numerisch gelöst werden können mit Hilfe der Finiten-Elemente-Methode und wie die Effizienz der Methode gesteigert werden kann durch die Anwendung von Operator-Splitting-Techniken und Problemparallelisierung mittels OPENMP.
9

Hydrodynamic Diffuse Interface Models for Cell Morphology and Motility

Marth, Wieland 27 May 2016 (has links)
In this thesis, we study mathematical models that describe the morphology of a generalized biological cell in equilibrium or under the influence of external forces. Within these models, the cell is considered as a thermodynamic system, where streaming effects in the cell bulk and the surrounding are coupled with a Helfrich-type model for the cell membrane. The governing evolution equations for the cell given in a continuum formulation are derived using an energy variation approach. Such two-phase flow problems that combine streaming effects with a free boundary problem that accounts for bending and surface tension can be described effectively by a diffuse interface approach. An advantage of the diffuse interface approach is that models for e.g. different biophysical processes can easily be combined. That makes this method suitable to describe complex phenomena such as cell motility and multi-cell dynamics. Within the first model for cell motility, we combine a biological network for GTPases with the hydrodynamic Helfrich-type model. This model allows to account for cell motility driven by membrane protrusion as a result of actin polymerization. Within the second model, we moreover extend the Helfrich-type model by an active gel theory to account for the actin filaments in the cell bulk. Caused by contractile stress within the actin-myosin solution, a spontaneous symmetry breaking event occurs that lead to cell motility. In this thesis, we further study the dynamics of multiple cells which is of wide interest since it reveals rich non-linear behavior. To apply the diffuse interface framework, we introduce several phase field variables to account for several cells that are coupled by a local interaction potential. In a first application, we study white blood cell margination, a biological phenomenon that results from the complex relation between collisions, different mechanical properties and lift forces of red blood cells and white blood cells within the vascular system. Here, it is shown that inertial effects, which can become of relevance in various parts of the cardiovascular system, lead to a decreasing tendency for margination with increasing Reynolds number. Finally, we combine the active polar gel theory and the multi-cell approach that is capable of studying collective migration of cells. This hydrodynamic approach predicts that collective migration emerges spontaneously forming coherently-moving clusters as a result of the mutual alignment of the velocity vectors during inelastic collisions. We further observe that hydrodynamics heavily influence those systems. However, a complete suppression of the onset of collective migration cannot be confirmed. Moreover, we give a brief insight how such highly coupled systems can be treated numerically using finite elements and how the numerical costs can be limited using operator splitting approaches and problem parallelization with OPENMP. / Diese Dissertation beschäftigt sich mit mathematischen Modellen zur Beschreibung von Gleichgewichts- und dynamischen Zuständen von verallgemeinerten biologischen Zellen. Die Zellen werden dabei als thermodynamisches System aufgefasst, bei dem Strömungseffekte innerhalb und außerhalb der Zelle zusammen mit einem Helfrich-Modell für Zellmembranen kombiniert werden. Schließlich werden durch einen Energie-Variations-Ansatz die Evolutionsgleichungen für die Zelle hergeleitet. Es ergeben sie dabei Mehrphasen-Systeme, die Strömungseffekte mit einem freien Randwertproblem, das zusätzlich physikalischen Einflüssen wie Biegung und Oberflächenspannung unterliegt, vereinen. Um solche Probleme effizient zu lösen, wird in dieser Arbeit die Diffuse-Interface-Methode verwendet. Ein Vorteil dieser Methode ist, dass es sehr einfach möglich ist, Modelle, die verschiedenste Prozesse beschreiben, miteinander zu vereinen. Dies erlaubt es, komplexe biologische Phänomene, wie zum Beispiel Zellmotilität oder auch die kollektive Bewegung von Zellen, zu beschreiben. In den Modellen für Zellmotilität wird ein biologisches Netzwerk-Modell für GTPasen oder auch ein Active-Polar-Gel-Modell, das die Aktinfilamente im Inneren der Zellen als Flüssigkristall auffasst, mit dem Multi-Phasen-Modell kombiniert. Beide Modelle erlauben es, komplexe Vorgänge bei der selbst hervorgerufenen Bewegung von Zellen, wie das Vorantreiben der Zellmembran durch Aktinpolymerisierung oder auch die Kontraktionsbewegung des Zellkörpers durch kontraktile Spannungen innerhalb des Zytoskelets der Zelle, zu verstehen. Weiterhin ist die kollektive Bewegung von vielen Zellen von großem Interesse, da sich hier viele nichtlineare Phänomene zeigen. Um das Diffuse-Interface-Modell für eine Zelle auf die Beschreibung mehrerer Zellen zu übertragen, werden mehrere Phasenfelder eingeführt, die die Zellen jeweils kennzeichnen. Schließlich werden die Zellen durch ein lokales Abstoßungspotential gekoppelt. Das Modell wird angewendet, um White blood cell margination, das die Annäherung von Leukozyten an die Blutgefäßwand bezeichnet, zu verstehen. Dieser Prozess wird dabei bestimmt durch den komplexen Zusammenhang zwischen Kollisionen, den jeweiligen mechanischen Eigenschaften der Zellen, sowie deren Auftriebskraft innerhalb der Adern. Die Simulationen zeigen, dass diese Annäherung sich in bestimmten Gebieten des kardiovaskulären Systems stark vermindert, in denen die Blutströmung das Stokes-Regime verlässt. Schließlich wird das Active-Polar-Gel-Modell mit dem Modell für die kollektive Bewegung vom Zellen kombiniert. Dies macht es möglich, die kollektive Bewegung der Zellen und den Einfluss von Hydrodynamik auf diese Bewegung zu untersuchen. Es zeigt sich dabei, dass der Zustand der kollektiven gerichteten Bewegung sich spontan aus der Neuausrichtung der jeweiligen Zellen durch inelastische Kollisionen ergibt. Obwohl die Hydrodynamik einen großen Einfluss auf solche Systeme hat, deuten die Simulationen nicht daraufhin, dass Hydrodynamik die kollektive Bewegung vollständig unterdrückt. Weiterhin wird in dieser Arbeit gezeigt, wie die stark gekoppelten Systeme numerisch gelöst werden können mit Hilfe der Finiten-Elemente-Methode und wie die Effizienz der Methode gesteigert werden kann durch die Anwendung von Operator-Splitting-Techniken und Problemparallelisierung mittels OPENMP.

Page generated in 0.0512 seconds