• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 9
  • 8
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polymers at membranes

Breidenich, Markus January 2000 (has links)
Die Oberfläche biologischer Zellen besteht aus einer Lipidmembran und einer Vielzahl von Proteinen und Polymeren, die in die Membran eingebaut sind. <br /> Die Beeinflussung der Membran durch Polymere, die mit einem Ende an der Membran verankert sind, wird im Rahmen dieser Arbeit anhand eines vereinfachten biomimetischen Systems studiert.<br/> Der entropische Druck, den das Polymer durch Stöße auf die Membran ausübt, führt dazu, dass sich die Membran vom Polymer weg krümmt. Die resultierende Membranform ist ein Kegel in der Nähe des Ankers und ein Katenoid in grossem Abstand vom Ankerpunkt. Monte Carlo-Simulationen bestätigen die perturbativ berechneten Resultate. <br/> Bei Hinzunahme eines attraktiven Potentials zwischen Polymer und Membran verringert sich die ursprünglich vom Polymer induzierte Krümmung. Im Limes starker Adsorption, in welchem das Polymer ganz auf der Membranoberfläche lokalisiert ist, verschwindet der Polymerdruck und die durch diesen induzierte Krümmung der Membran. Falls das Polymer nicht direkt auf der Membranoberfläche verankert ist, sondern in endlichem Ankerabstand, biegt sich die Membran im adsorbierten Fall zum Polymer hin. <br /> Im letzten Teil der Arbeit werden nicht verankerte Polymere in Lösung betrachtet. Untersucht wird der Einfluss einer solchen Polymerlösung auf die Krümmung der Membran. Im Grenzfall einer rein sterischen, repulsiven Wechselwirkung zwischen Polymeren und Membran biegt sich diese, im Gegensatz zur verankerten Situation, zur Lösung hin. Bei zunehmender Attraktion biegt sich die Membran im Limes starker Adsorption der Polymere von der Lösung weg. / The surface of biological cells consists of a lipid membrane and a large amount of various proteins and polymers, which are embedded in the membrane or attached to it. <br/> We investigate how membranes are influenced by polymers, which are anchored to the membrane by one end. The entropic pressure exerted by the polymer induces a curvature, which bends the membrane away from the polymer. The resulting membrane shape profile is a cone in the vicinity of the anchor segment and a catenoid far away from it. The perturbative calculations are confirmed by Monte-Carlo simulations. <br/> An additional attractive interaction between polymer and membrane reduces the entropically induced curvature. In the limit of strong adsorption, the polymer is localized directly on the membrane surface and does not induce any pressure, i.e. the membrane curvature vanishes. If the polymer is not anchored directly on the membrane surface, but in a non-vanishing anchoring distance, the membrane bends towards the polymer for strong adsorption.<br/> In the last part of the thesis, we study membranes under the influence of non-anchored polymers in solution. In the limit of pure steric interactions between the membrane and free polymers, the membrane curves towards the polymers (in contrast to the case of anchored polymers). In the limit of strong adsorption the membrane bends away from the polymers.
2

Interactions of Quercetin-Uranium Complexes with Biomembranes and DNA

Attia, Enas 05 August 2014 (has links) (PDF)
Uranium decontamination gains a great importance with the spread of nuclear waste in both soil and water systems across the planet. All known remediation methods of uranium can be exclusively based either on synthetic materials with high adsorbent power and known physical chemistry or life organisms by which the uranium eventually accumulated inside their tissues. In the present thesis, it was attempted to design a rational approach for uranyl removal primarily from waters using the reducing potential of quercetin, which is a plant-derived small organic molecules, along with its photochemical activities. Such approach, which is neither a fully synthetic nor an organism-based approach, was chosen here to avoid disadvantages with both traditional strategies. Here, complexation experiments were designed to assess the use of uranyl-quercetin complexes for the photoreduction of water-soluble U(VI) to insoluble U(IV) by comparing absorption properties of uranyl-quercetin complexes in acetone, water, and hydrophobic bilayer lipid vesicles. The UV-vis data show that uranyl quercetin complex can form in both hydrophobic and hydrophilic environments. In both cases the B-ring band in quercetin structure becomes reduced, red shifted and a pronounced absorption arises in the 400-500 nm range. Such data suggests that U(VI) binds at the 3-OH and 4-carbonyl of ring C of quercetin. Interestingly, the results of UV-Vis spectroscopy part hint at a crucial role of a stable or transiently ionized hydroxyl for the efficient uranyl-dependent photodegradation of quercetin. FTIR spectroscopy absorption changes further demonstrates that the UV-vis-spectroscopic changes are indeed accompanied by changes in the chemical structure of the complex as expected for a uranyl-dependent photodegradation. IR data thus suggest that U(VI) becomes reduced by the photoreaction, rather than merely changing its coordination shell. The frequency shifts in the C=C and C=O absorption range on the other hand are consistent with changes in force constants rather than bond breakage. Upon illumination condition, uranyl quercetin complex in water forms a dark precipitate. Uranyl precipitation and the disappearance of U(VI) IR absorption bands upon illumination further demonstrate that uranyl acts as a redox partner rather than a catalyst in the photoreaction of quercetin. The formation of uranyl-quercetin complexes in the presence of lipidic phases has been addressed experimentally. The complex is partitioned into the hydrophilic/hydrophobic interface of liposomes. Its electronic absorption properties are influenced by the degree of hydrophobicity provided by the adjacent lipid headgroups. The preference of quercetin to associate with hydrophobic microenvironments can thus be exploited to transfer uranyl to the lipid water biomolecular interface. Illumination of the uranyl-quercetin complex in the presence of different liposomes has been performed in this study for the first time, to the best of my knowledge. The data provide evidence that again uranyl is a redox partner for the photodegradation of quercetin also in this microenvironment. Uranyl in an oxidation state smaller than VI is unsoluble in water. Therefore, its quercetin-mediated photoreduaction of uranium provides a method to transfer soluble uranium to the liposome and stabilize the reduced photoproduct. Thereby, uranyl could be removed from solution in an insoluble form using cheap natural compounds. The binding site assignment of uranyl-quercetin complex in acetone have been verified here using NMR spectra and DFT theory. NMR Spectra showed that the observations of broadened and narrow bands in the NMR spectra of quercetin, upon complexation with uranyl, support an intramolecular exchange or site exchange within the quercetin molecule. Moreover, the complexation takes place around the carbonyl group with U(VI) exhibiting two possibly coordination modes, involving the carbonyl and the adjacent O(H) groups. This has been also confirmed from the DFT calculations. Finally, interaction experiments of uranyl-quercetin complex with DNA have been performed to assess an alternative uranyl-trapping and photoreduction system. The data show that consecutive addition of quercetin and uranyl destabilizes DNA. However, a preformed uranyl quercetin complex has very little effect on DNA structure. On the other hand, quercetin and uranyl appear to bind to DNA as a preformed complex in the loop portion of hairpin DNA. Therefore, also HP DNA is expected to be a suitable but less effective trapping system for the uranyl quercetin complex and its potential photoproducts.
3

Inrarotlineardichroismus molekulargeordneter Systeme - Untersuchungen zur Hydratation und Struktur von Dienlipiden

Binder, Hans 28 November 2004 (has links) (PDF)
Referat: Das lyotrope Phasenverhalten und die molekulare Architektur von Membranen ausgewählter Dienlipi-de wird mittels Infrarot-(IR)-Spektroskopie untersucht. Doppelschichten aus synthetischen Lipiden haben sich als Strukturmodell biologischer Membranen bewährt. Durch den Einbau reaktiver Diengruppen können die Lipidmoleküle polymerisiert werden. Mögliche Anwendungen als biokompatible Materialien oder als Mikro-Hüllen für die Wirkstoffüber-tragung machen polymerisierte Lipidstrukturen und insbesondere Membranen interessant. Darüber hinaus stellen die Diengruppen eine definierte Störung der Membran dar, die die Untersuchung grundlegender Fragen der Membranarchitektur erlaubt. In der Arbeit wird ein besonderer Schwerpunkt auf die Hydratation von Lipidsystemen gelegt. Das lyotrope Phasenverhalten und die molekulare Struktur im polaren und hydrophoben Bereich von Lipi-den mit Diengruppen am Ende und am Anfang der Fettsäureketten werden detailliert analysiert. Der Einfluß der molekulargeordneten Umgebung auf die chemische Stabilität der Diengruppen in den Li-pidaggregaten, ihrer Konfiguration und die Struktur des polymeren Produkts werden untersucht. Abstoßende, kurzweitreichende Wechselwirkungen zwischen polaren, hydratisierten Oberflächen sind für die Stabilität kolloidaler Systeme und für biologisch relevante Prozesse, wie die Fusion von Zell-membranen, von großer Bedeutung. Die Untersuchung dieser Hydratationskraft vor und nach der Po-lymerisation der Lipidmembranen, sowie in Systemen unterschiedlicher Struktur im Kopfgruppenbe-reich der Membranen, lieferte Informationen über spezifische Beiträge, die durch die Bewegung ein-zelner Moleküle oder die intermolekularen Wechselwirkungen im polaren Bereich der Membranen hervorgerufen werden. Zur Aufklärung der molekularen Struktur der Lipidsysteme wird in erster Linie ihr IR-Lineardichroismus analysiert. Obwohl die Theorie der Absorption polarisierter elektromagnetischer Strahlung seit langem ausgearbeitet ist, fehlte bislang ein allgemeiner Formalismus zur Behandlung lamellarer, biaxialer Strukturen. Diese Lücke wird in dieser Arbeit geschlossen. Im theoretischen Teil wird der Zusammenhang zwischen der Absorption polarisierten Lichtes und der molekularen Ordnung betrachtet. Die Meßgröße, der IR-Ordnungsparameter, wird in kompakter Form als Funktion moleku-larer Ordnungsparameter ausgedrückt. Besondere Aufmerksamkeit wird der Technik der abge-schwächten Totalreflexion (ATR) gewidmet. Der potentielle Informationsgehalt ausgewählter Schwingungsmoden langkettiger Moleküle wird anhand der bekannten Struktur von Stearinsäurekri-stallen und DPPC-Membranen überprüft. Eine Reihe von für die praktische Anwendung der ATR-Spektroskopie wichtigen Details, wie der Einfluß der Doppelbrechung und die effektive Eindringtiefe des IR-Lichtes in die Probe, wird anhand von Beispielen untersucht. Eine zentrale Stellung nimmt der Lineardichroismus der intensiven Banden der C–H-Streckschwingungen der Fettsäureketten und vor allem der IR-aktiven Moden der Diengruppen ein.
4

Interactions of Quercetin-Uranium Complexes with Biomembranes and DNA

Attia, Enas 21 July 2014 (has links)
Uranium decontamination gains a great importance with the spread of nuclear waste in both soil and water systems across the planet. All known remediation methods of uranium can be exclusively based either on synthetic materials with high adsorbent power and known physical chemistry or life organisms by which the uranium eventually accumulated inside their tissues. In the present thesis, it was attempted to design a rational approach for uranyl removal primarily from waters using the reducing potential of quercetin, which is a plant-derived small organic molecules, along with its photochemical activities. Such approach, which is neither a fully synthetic nor an organism-based approach, was chosen here to avoid disadvantages with both traditional strategies. Here, complexation experiments were designed to assess the use of uranyl-quercetin complexes for the photoreduction of water-soluble U(VI) to insoluble U(IV) by comparing absorption properties of uranyl-quercetin complexes in acetone, water, and hydrophobic bilayer lipid vesicles. The UV-vis data show that uranyl quercetin complex can form in both hydrophobic and hydrophilic environments. In both cases the B-ring band in quercetin structure becomes reduced, red shifted and a pronounced absorption arises in the 400-500 nm range. Such data suggests that U(VI) binds at the 3-OH and 4-carbonyl of ring C of quercetin. Interestingly, the results of UV-Vis spectroscopy part hint at a crucial role of a stable or transiently ionized hydroxyl for the efficient uranyl-dependent photodegradation of quercetin. FTIR spectroscopy absorption changes further demonstrates that the UV-vis-spectroscopic changes are indeed accompanied by changes in the chemical structure of the complex as expected for a uranyl-dependent photodegradation. IR data thus suggest that U(VI) becomes reduced by the photoreaction, rather than merely changing its coordination shell. The frequency shifts in the C=C and C=O absorption range on the other hand are consistent with changes in force constants rather than bond breakage. Upon illumination condition, uranyl quercetin complex in water forms a dark precipitate. Uranyl precipitation and the disappearance of U(VI) IR absorption bands upon illumination further demonstrate that uranyl acts as a redox partner rather than a catalyst in the photoreaction of quercetin. The formation of uranyl-quercetin complexes in the presence of lipidic phases has been addressed experimentally. The complex is partitioned into the hydrophilic/hydrophobic interface of liposomes. Its electronic absorption properties are influenced by the degree of hydrophobicity provided by the adjacent lipid headgroups. The preference of quercetin to associate with hydrophobic microenvironments can thus be exploited to transfer uranyl to the lipid water biomolecular interface. Illumination of the uranyl-quercetin complex in the presence of different liposomes has been performed in this study for the first time, to the best of my knowledge. The data provide evidence that again uranyl is a redox partner for the photodegradation of quercetin also in this microenvironment. Uranyl in an oxidation state smaller than VI is unsoluble in water. Therefore, its quercetin-mediated photoreduaction of uranium provides a method to transfer soluble uranium to the liposome and stabilize the reduced photoproduct. Thereby, uranyl could be removed from solution in an insoluble form using cheap natural compounds. The binding site assignment of uranyl-quercetin complex in acetone have been verified here using NMR spectra and DFT theory. NMR Spectra showed that the observations of broadened and narrow bands in the NMR spectra of quercetin, upon complexation with uranyl, support an intramolecular exchange or site exchange within the quercetin molecule. Moreover, the complexation takes place around the carbonyl group with U(VI) exhibiting two possibly coordination modes, involving the carbonyl and the adjacent O(H) groups. This has been also confirmed from the DFT calculations. Finally, interaction experiments of uranyl-quercetin complex with DNA have been performed to assess an alternative uranyl-trapping and photoreduction system. The data show that consecutive addition of quercetin and uranyl destabilizes DNA. However, a preformed uranyl quercetin complex has very little effect on DNA structure. On the other hand, quercetin and uranyl appear to bind to DNA as a preformed complex in the loop portion of hairpin DNA. Therefore, also HP DNA is expected to be a suitable but less effective trapping system for the uranyl quercetin complex and its potential photoproducts.
5

Inrarotlineardichroismus molekulargeordneter Systeme - Untersuchungen zur Hydratation und Struktur von Dienlipiden

Binder, Hans 05 March 2001 (has links)
Referat: Das lyotrope Phasenverhalten und die molekulare Architektur von Membranen ausgewählter Dienlipi-de wird mittels Infrarot-(IR)-Spektroskopie untersucht. Doppelschichten aus synthetischen Lipiden haben sich als Strukturmodell biologischer Membranen bewährt. Durch den Einbau reaktiver Diengruppen können die Lipidmoleküle polymerisiert werden. Mögliche Anwendungen als biokompatible Materialien oder als Mikro-Hüllen für die Wirkstoffüber-tragung machen polymerisierte Lipidstrukturen und insbesondere Membranen interessant. Darüber hinaus stellen die Diengruppen eine definierte Störung der Membran dar, die die Untersuchung grundlegender Fragen der Membranarchitektur erlaubt. In der Arbeit wird ein besonderer Schwerpunkt auf die Hydratation von Lipidsystemen gelegt. Das lyotrope Phasenverhalten und die molekulare Struktur im polaren und hydrophoben Bereich von Lipi-den mit Diengruppen am Ende und am Anfang der Fettsäureketten werden detailliert analysiert. Der Einfluß der molekulargeordneten Umgebung auf die chemische Stabilität der Diengruppen in den Li-pidaggregaten, ihrer Konfiguration und die Struktur des polymeren Produkts werden untersucht. Abstoßende, kurzweitreichende Wechselwirkungen zwischen polaren, hydratisierten Oberflächen sind für die Stabilität kolloidaler Systeme und für biologisch relevante Prozesse, wie die Fusion von Zell-membranen, von großer Bedeutung. Die Untersuchung dieser Hydratationskraft vor und nach der Po-lymerisation der Lipidmembranen, sowie in Systemen unterschiedlicher Struktur im Kopfgruppenbe-reich der Membranen, lieferte Informationen über spezifische Beiträge, die durch die Bewegung ein-zelner Moleküle oder die intermolekularen Wechselwirkungen im polaren Bereich der Membranen hervorgerufen werden. Zur Aufklärung der molekularen Struktur der Lipidsysteme wird in erster Linie ihr IR-Lineardichroismus analysiert. Obwohl die Theorie der Absorption polarisierter elektromagnetischer Strahlung seit langem ausgearbeitet ist, fehlte bislang ein allgemeiner Formalismus zur Behandlung lamellarer, biaxialer Strukturen. Diese Lücke wird in dieser Arbeit geschlossen. Im theoretischen Teil wird der Zusammenhang zwischen der Absorption polarisierten Lichtes und der molekularen Ordnung betrachtet. Die Meßgröße, der IR-Ordnungsparameter, wird in kompakter Form als Funktion moleku-larer Ordnungsparameter ausgedrückt. Besondere Aufmerksamkeit wird der Technik der abge-schwächten Totalreflexion (ATR) gewidmet. Der potentielle Informationsgehalt ausgewählter Schwingungsmoden langkettiger Moleküle wird anhand der bekannten Struktur von Stearinsäurekri-stallen und DPPC-Membranen überprüft. Eine Reihe von für die praktische Anwendung der ATR-Spektroskopie wichtigen Details, wie der Einfluß der Doppelbrechung und die effektive Eindringtiefe des IR-Lichtes in die Probe, wird anhand von Beispielen untersucht. Eine zentrale Stellung nimmt der Lineardichroismus der intensiven Banden der C–H-Streckschwingungen der Fettsäureketten und vor allem der IR-aktiven Moden der Diengruppen ein.
6

Fluctuations and Oscillations in Cell Membranes / Fluktuationen und Oszillationen in Zellmembranen

Händel, Chris 29 March 2016 (has links) (PDF)
Zellmembranen sind hochspezialisierte Mehrkomponentenlegierungen, welche sowohl die Zelle selbst als auch ihre Organellen umgeben. Sie spielen eine entscheidende Rolle bei vielen biologisch relevanten Prozessen wie die Signaltransduktion und die Zellbewegung. Aus diesem Grund ist eine genaue Charakterisierung ihrer Eigenschaften der Schlüssel zum Verständnis der Bausteine des Lebens sowie ihrer Erkrankungen. Besonders Krebs steht im engen Zusammenhang mit Veränderungen der biomechanischen Eigenschaften vom Gewebe, Zellen und ihren Organellen. Während Veränderungen des Zytoskeletts von Krebszellen im Fokus vieler Biophysiker stehen, ist die Bedeutung der Biomechanik von Zellmembran weitgehend unklar. Zellmembranen faszinieren Wissenschaftler jedoch nicht nur wegen ihrer biomechanischen Eigenschaften. Sie sind auch Beispiele für eine selbstorganisierte und heterogene Landschaft, in der Prozesse fernab des Gleichgewichtes, wie z.B. räumliche und zeitliche Musterbildungen, auftreten. Die vorgelegte Dissertation untersucht erstmals umfassend die zentrale Rolle der Zellmembran und ihrer molekularen Architektur für die Signalübertragung, die Biomechanik und die Zellmigration. Hierfür werden einfache Modellmembranen aber auch komplexere Vesikel und ganze Zellen mittels etablierter physikalischer Methoden analysiert. Diese reichen von Fourier- Analysen zur Charakterisierung von thermisch angeregten Membranundulationen über Massenspektrometrie und ‘Optical Stretcher’ Messungen von ganzen Zellen bis hin zur Filmwaagentechnik. Des Weiteren wird ein Modellsystem vorgestellt, welches sowohl einen experimentellen als auch einen mathematischen Zugang zum ‘ME-switch’ ermöglicht. Die vorgelegte Dissertation bietet neue Einblicke in wichtige Funktionen von Zellmembranen und zeigt neue therapeutische Perspektiven in der Membran- und Krebsforschung auf.
7

Fluctuations and Oscillations in Cell Membranes

Händel, Chris 22 February 2016 (has links)
Zellmembranen sind hochspezialisierte Mehrkomponentenlegierungen, welche sowohl die Zelle selbst als auch ihre Organellen umgeben. Sie spielen eine entscheidende Rolle bei vielen biologisch relevanten Prozessen wie die Signaltransduktion und die Zellbewegung. Aus diesem Grund ist eine genaue Charakterisierung ihrer Eigenschaften der Schlüssel zum Verständnis der Bausteine des Lebens sowie ihrer Erkrankungen. Besonders Krebs steht im engen Zusammenhang mit Veränderungen der biomechanischen Eigenschaften vom Gewebe, Zellen und ihren Organellen. Während Veränderungen des Zytoskeletts von Krebszellen im Fokus vieler Biophysiker stehen, ist die Bedeutung der Biomechanik von Zellmembran weitgehend unklar. Zellmembranen faszinieren Wissenschaftler jedoch nicht nur wegen ihrer biomechanischen Eigenschaften. Sie sind auch Beispiele für eine selbstorganisierte und heterogene Landschaft, in der Prozesse fernab des Gleichgewichtes, wie z.B. räumliche und zeitliche Musterbildungen, auftreten. Die vorgelegte Dissertation untersucht erstmals umfassend die zentrale Rolle der Zellmembran und ihrer molekularen Architektur für die Signalübertragung, die Biomechanik und die Zellmigration. Hierfür werden einfache Modellmembranen aber auch komplexere Vesikel und ganze Zellen mittels etablierter physikalischer Methoden analysiert. Diese reichen von Fourier- Analysen zur Charakterisierung von thermisch angeregten Membranundulationen über Massenspektrometrie und ‘Optical Stretcher’ Messungen von ganzen Zellen bis hin zur Filmwaagentechnik. Des Weiteren wird ein Modellsystem vorgestellt, welches sowohl einen experimentellen als auch einen mathematischen Zugang zum ‘ME-switch’ ermöglicht. Die vorgelegte Dissertation bietet neue Einblicke in wichtige Funktionen von Zellmembranen und zeigt neue therapeutische Perspektiven in der Membran- und Krebsforschung auf.:1 Introduction 2 Background 2.1 The Cell Membrane 2.1.1 Lipids in Cell Membranes 2.1.2 Membrane Proteins 2.1.3 An Overview on Membrane Models 2.1.4 Lipid Rafts 2.2 Model Membranes – An Experimental Access to Cell Membranes 2.2.1 Surface Tension and Thermodynamic Equilibrium 2.2.2 Langmuir Monolayer 2.2.3 The Polymorphism of Langmuir Monolayers 2.2.4 Membrane Vesicles 2.3 Biological Membranes as Semiflexible Shells 2.3.1 Elasticity of Soft Shells 2.3.2 Helfrichs Theory About Bending Deformations 2.3.3 Membrane Undulation 2.4 Membranes in Cell Signaling 2.4.1 Signal Transduction Fundamentals 2.4.2 Phosphoinositides 2.4.3 Phosphatidylinositol Signaling Pathway 2.4.4 The Myristoyl-Electrostatic Switch 2.5 Reaction-Diffusion Systems 2.5.1 Diffusion 2.5.2 Michaelis-Menten Kinetics 2.5.3 Reaction-Diffusion Systems 3 Methods, Materials and Theory 3.1 Optical Microscopy 3.1.1 Fluorescence Microscopy 3.1.2 Phase Contrast Microscopy 3.2 Cell Culture and GPMV Formation 3.2.1 Tumor Dissociation and Cell Culturing of Primary Cells 3.2.2 Cell Lines and Cell Culturing 3.2.3 Preparation of Giant Plasma Membrane Vesicles 3.3 Optical Stretcher 3.4 Fourier Analysis of Thermally Excited Membrane Fluctuations 3.4.1 The Quasi-Spherical Model – Membrane Fluctuations 3.4.2 Determination of the Bending Rigidity 3.5 Mass Spectrometry 3.5.1 MALDI-TOF Mass Spectrometry 3.5.2 ESI Mass Spectrometry 3.6 Migration, Invasion and Cell Death Assays 3.7 Langmuir-Blodgett Technique 3.7.1 Langmuir Troughs and Film Balances 3.7.2 Experimental Setup and Monolayer Preperation 3.7.3 Phospholipids, Dyes and Buffer Solutions 4 Fluctuations in Cell Membranes 4.1 Cell Membrane Softening in Human Breast and Cervical Cancer Cells 4.1.1 Bending Rigidity of Human Beast and Cervical Cell Membranes 4.1.2 MALDI-TOF Analysis of Lipid Composition 4.1.3 Summary and Discussion 4.2 Targeting of Membrane Rigidity – Implications on Migration 4.2.1 ESI Tandem Analysis of Lipid Composition 4.2.2 Biomechanical Behavior of Whole Cells and Membranes 4.2.3 Migration and Invasion Behavior 4.2.4 Summary and Discussion 5 Oscillations in Cell Membranes 5.1 Mimicking the ME-switch 5.1.1 DPPC/PIP2 monolayers at the presence of MARCKS 5.1.2 Lateral organization of PIP2 in DPPC/PIP2 monolayers 5.1.3 Translocation of MARCKS 5.1.4 Phosphorylation of MARCKS by PKC 5.1.5 Summary and Discussion 5.2 Dynamic Membrane Structure Induces Temporal Pattern Formation 5.2.1 Mechanism of the Oscillation 5.2.2 Modeling the ME-switch 5.2.3 Time Evolution 5.2.4 Phase Diagrams and Open Systems 5.2.5 Summary and Discussion 6 Conclusion and Outlook Appendix Bibliography List of Figures List of Abbreviations Acknowledgement
8

Hydrodynamic Diffuse Interface Models for Cell Morphology and Motility

Marth, Wieland 05 July 2016 (has links) (PDF)
In this thesis, we study mathematical models that describe the morphology of a generalized biological cell in equilibrium or under the influence of external forces. Within these models, the cell is considered as a thermodynamic system, where streaming effects in the cell bulk and the surrounding are coupled with a Helfrich-type model for the cell membrane. The governing evolution equations for the cell given in a continuum formulation are derived using an energy variation approach. Such two-phase flow problems that combine streaming effects with a free boundary problem that accounts for bending and surface tension can be described effectively by a diffuse interface approach. An advantage of the diffuse interface approach is that models for e.g. different biophysical processes can easily be combined. That makes this method suitable to describe complex phenomena such as cell motility and multi-cell dynamics. Within the first model for cell motility, we combine a biological network for GTPases with the hydrodynamic Helfrich-type model. This model allows to account for cell motility driven by membrane protrusion as a result of actin polymerization. Within the second model, we moreover extend the Helfrich-type model by an active gel theory to account for the actin filaments in the cell bulk. Caused by contractile stress within the actin-myosin solution, a spontaneous symmetry breaking event occurs that lead to cell motility. In this thesis, we further study the dynamics of multiple cells which is of wide interest since it reveals rich non-linear behavior. To apply the diffuse interface framework, we introduce several phase field variables to account for several cells that are coupled by a local interaction potential. In a first application, we study white blood cell margination, a biological phenomenon that results from the complex relation between collisions, different mechanical properties and lift forces of red blood cells and white blood cells within the vascular system. Here, it is shown that inertial effects, which can become of relevance in various parts of the cardiovascular system, lead to a decreasing tendency for margination with increasing Reynolds number. Finally, we combine the active polar gel theory and the multi-cell approach that is capable of studying collective migration of cells. This hydrodynamic approach predicts that collective migration emerges spontaneously forming coherently-moving clusters as a result of the mutual alignment of the velocity vectors during inelastic collisions. We further observe that hydrodynamics heavily influence those systems. However, a complete suppression of the onset of collective migration cannot be confirmed. Moreover, we give a brief insight how such highly coupled systems can be treated numerically using finite elements and how the numerical costs can be limited using operator splitting approaches and problem parallelization with OPENMP. / Diese Dissertation beschäftigt sich mit mathematischen Modellen zur Beschreibung von Gleichgewichts- und dynamischen Zuständen von verallgemeinerten biologischen Zellen. Die Zellen werden dabei als thermodynamisches System aufgefasst, bei dem Strömungseffekte innerhalb und außerhalb der Zelle zusammen mit einem Helfrich-Modell für Zellmembranen kombiniert werden. Schließlich werden durch einen Energie-Variations-Ansatz die Evolutionsgleichungen für die Zelle hergeleitet. Es ergeben sie dabei Mehrphasen-Systeme, die Strömungseffekte mit einem freien Randwertproblem, das zusätzlich physikalischen Einflüssen wie Biegung und Oberflächenspannung unterliegt, vereinen. Um solche Probleme effizient zu lösen, wird in dieser Arbeit die Diffuse-Interface-Methode verwendet. Ein Vorteil dieser Methode ist, dass es sehr einfach möglich ist, Modelle, die verschiedenste Prozesse beschreiben, miteinander zu vereinen. Dies erlaubt es, komplexe biologische Phänomene, wie zum Beispiel Zellmotilität oder auch die kollektive Bewegung von Zellen, zu beschreiben. In den Modellen für Zellmotilität wird ein biologisches Netzwerk-Modell für GTPasen oder auch ein Active-Polar-Gel-Modell, das die Aktinfilamente im Inneren der Zellen als Flüssigkristall auffasst, mit dem Multi-Phasen-Modell kombiniert. Beide Modelle erlauben es, komplexe Vorgänge bei der selbst hervorgerufenen Bewegung von Zellen, wie das Vorantreiben der Zellmembran durch Aktinpolymerisierung oder auch die Kontraktionsbewegung des Zellkörpers durch kontraktile Spannungen innerhalb des Zytoskelets der Zelle, zu verstehen. Weiterhin ist die kollektive Bewegung von vielen Zellen von großem Interesse, da sich hier viele nichtlineare Phänomene zeigen. Um das Diffuse-Interface-Modell für eine Zelle auf die Beschreibung mehrerer Zellen zu übertragen, werden mehrere Phasenfelder eingeführt, die die Zellen jeweils kennzeichnen. Schließlich werden die Zellen durch ein lokales Abstoßungspotential gekoppelt. Das Modell wird angewendet, um White blood cell margination, das die Annäherung von Leukozyten an die Blutgefäßwand bezeichnet, zu verstehen. Dieser Prozess wird dabei bestimmt durch den komplexen Zusammenhang zwischen Kollisionen, den jeweiligen mechanischen Eigenschaften der Zellen, sowie deren Auftriebskraft innerhalb der Adern. Die Simulationen zeigen, dass diese Annäherung sich in bestimmten Gebieten des kardiovaskulären Systems stark vermindert, in denen die Blutströmung das Stokes-Regime verlässt. Schließlich wird das Active-Polar-Gel-Modell mit dem Modell für die kollektive Bewegung vom Zellen kombiniert. Dies macht es möglich, die kollektive Bewegung der Zellen und den Einfluss von Hydrodynamik auf diese Bewegung zu untersuchen. Es zeigt sich dabei, dass der Zustand der kollektiven gerichteten Bewegung sich spontan aus der Neuausrichtung der jeweiligen Zellen durch inelastische Kollisionen ergibt. Obwohl die Hydrodynamik einen großen Einfluss auf solche Systeme hat, deuten die Simulationen nicht daraufhin, dass Hydrodynamik die kollektive Bewegung vollständig unterdrückt. Weiterhin wird in dieser Arbeit gezeigt, wie die stark gekoppelten Systeme numerisch gelöst werden können mit Hilfe der Finiten-Elemente-Methode und wie die Effizienz der Methode gesteigert werden kann durch die Anwendung von Operator-Splitting-Techniken und Problemparallelisierung mittels OPENMP.
9

Hydrodynamic Diffuse Interface Models for Cell Morphology and Motility

Marth, Wieland 27 May 2016 (has links)
In this thesis, we study mathematical models that describe the morphology of a generalized biological cell in equilibrium or under the influence of external forces. Within these models, the cell is considered as a thermodynamic system, where streaming effects in the cell bulk and the surrounding are coupled with a Helfrich-type model for the cell membrane. The governing evolution equations for the cell given in a continuum formulation are derived using an energy variation approach. Such two-phase flow problems that combine streaming effects with a free boundary problem that accounts for bending and surface tension can be described effectively by a diffuse interface approach. An advantage of the diffuse interface approach is that models for e.g. different biophysical processes can easily be combined. That makes this method suitable to describe complex phenomena such as cell motility and multi-cell dynamics. Within the first model for cell motility, we combine a biological network for GTPases with the hydrodynamic Helfrich-type model. This model allows to account for cell motility driven by membrane protrusion as a result of actin polymerization. Within the second model, we moreover extend the Helfrich-type model by an active gel theory to account for the actin filaments in the cell bulk. Caused by contractile stress within the actin-myosin solution, a spontaneous symmetry breaking event occurs that lead to cell motility. In this thesis, we further study the dynamics of multiple cells which is of wide interest since it reveals rich non-linear behavior. To apply the diffuse interface framework, we introduce several phase field variables to account for several cells that are coupled by a local interaction potential. In a first application, we study white blood cell margination, a biological phenomenon that results from the complex relation between collisions, different mechanical properties and lift forces of red blood cells and white blood cells within the vascular system. Here, it is shown that inertial effects, which can become of relevance in various parts of the cardiovascular system, lead to a decreasing tendency for margination with increasing Reynolds number. Finally, we combine the active polar gel theory and the multi-cell approach that is capable of studying collective migration of cells. This hydrodynamic approach predicts that collective migration emerges spontaneously forming coherently-moving clusters as a result of the mutual alignment of the velocity vectors during inelastic collisions. We further observe that hydrodynamics heavily influence those systems. However, a complete suppression of the onset of collective migration cannot be confirmed. Moreover, we give a brief insight how such highly coupled systems can be treated numerically using finite elements and how the numerical costs can be limited using operator splitting approaches and problem parallelization with OPENMP. / Diese Dissertation beschäftigt sich mit mathematischen Modellen zur Beschreibung von Gleichgewichts- und dynamischen Zuständen von verallgemeinerten biologischen Zellen. Die Zellen werden dabei als thermodynamisches System aufgefasst, bei dem Strömungseffekte innerhalb und außerhalb der Zelle zusammen mit einem Helfrich-Modell für Zellmembranen kombiniert werden. Schließlich werden durch einen Energie-Variations-Ansatz die Evolutionsgleichungen für die Zelle hergeleitet. Es ergeben sie dabei Mehrphasen-Systeme, die Strömungseffekte mit einem freien Randwertproblem, das zusätzlich physikalischen Einflüssen wie Biegung und Oberflächenspannung unterliegt, vereinen. Um solche Probleme effizient zu lösen, wird in dieser Arbeit die Diffuse-Interface-Methode verwendet. Ein Vorteil dieser Methode ist, dass es sehr einfach möglich ist, Modelle, die verschiedenste Prozesse beschreiben, miteinander zu vereinen. Dies erlaubt es, komplexe biologische Phänomene, wie zum Beispiel Zellmotilität oder auch die kollektive Bewegung von Zellen, zu beschreiben. In den Modellen für Zellmotilität wird ein biologisches Netzwerk-Modell für GTPasen oder auch ein Active-Polar-Gel-Modell, das die Aktinfilamente im Inneren der Zellen als Flüssigkristall auffasst, mit dem Multi-Phasen-Modell kombiniert. Beide Modelle erlauben es, komplexe Vorgänge bei der selbst hervorgerufenen Bewegung von Zellen, wie das Vorantreiben der Zellmembran durch Aktinpolymerisierung oder auch die Kontraktionsbewegung des Zellkörpers durch kontraktile Spannungen innerhalb des Zytoskelets der Zelle, zu verstehen. Weiterhin ist die kollektive Bewegung von vielen Zellen von großem Interesse, da sich hier viele nichtlineare Phänomene zeigen. Um das Diffuse-Interface-Modell für eine Zelle auf die Beschreibung mehrerer Zellen zu übertragen, werden mehrere Phasenfelder eingeführt, die die Zellen jeweils kennzeichnen. Schließlich werden die Zellen durch ein lokales Abstoßungspotential gekoppelt. Das Modell wird angewendet, um White blood cell margination, das die Annäherung von Leukozyten an die Blutgefäßwand bezeichnet, zu verstehen. Dieser Prozess wird dabei bestimmt durch den komplexen Zusammenhang zwischen Kollisionen, den jeweiligen mechanischen Eigenschaften der Zellen, sowie deren Auftriebskraft innerhalb der Adern. Die Simulationen zeigen, dass diese Annäherung sich in bestimmten Gebieten des kardiovaskulären Systems stark vermindert, in denen die Blutströmung das Stokes-Regime verlässt. Schließlich wird das Active-Polar-Gel-Modell mit dem Modell für die kollektive Bewegung vom Zellen kombiniert. Dies macht es möglich, die kollektive Bewegung der Zellen und den Einfluss von Hydrodynamik auf diese Bewegung zu untersuchen. Es zeigt sich dabei, dass der Zustand der kollektiven gerichteten Bewegung sich spontan aus der Neuausrichtung der jeweiligen Zellen durch inelastische Kollisionen ergibt. Obwohl die Hydrodynamik einen großen Einfluss auf solche Systeme hat, deuten die Simulationen nicht daraufhin, dass Hydrodynamik die kollektive Bewegung vollständig unterdrückt. Weiterhin wird in dieser Arbeit gezeigt, wie die stark gekoppelten Systeme numerisch gelöst werden können mit Hilfe der Finiten-Elemente-Methode und wie die Effizienz der Methode gesteigert werden kann durch die Anwendung von Operator-Splitting-Techniken und Problemparallelisierung mittels OPENMP.

Page generated in 0.4364 seconds