• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 14
  • 10
  • 7
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 81
  • 26
  • 16
  • 14
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Switched-Tank VCO Designs and Single Crystal Silicon Contour-Mode Disk Resonators for use in Multiband Radio Frequency Sources

Maxey, Christopher Allen 23 August 2004 (has links)
To support the large growth in wireless devices, such as personal data assistants (PDAs), wireless local area network (WLAN) enabled laptop computers, and intelligent transportation systems (ITS), the FCC allocated three high-frequency bands for unlicensed operation. Of particular interest is the 5-6 GHz Unlicensed National Information Infrastructure (UNII) band intended to support high-speed WLAN applications. The UNII band is further split into three smaller 100 MHz sub-bands: 5.15 - 5.25 GHz; 5.25-5.35 GHz; and 5.725-5.825 GHz. VCOs that can be switched between each of the three UNII sub-bands offer flexibility and optimum phase-locked loop (PLL) design versus non-switchable VCOs. This work presents switched-tank voltage controlled oscillators (VCOs) designed in Motorolaà ­s 0.18 à µm HIP6WRF BiCMOS process that could be used in multiband receivers covering the three UNII sub-bands. The first VCO was optimized for low power consumption. The VCO draws a total of 6.75 mA from a 1.8 V supply including buffer amplifiers. The VCO is designed with a switched-capacitor LC tank circuit that can switch to two center frequencies, 5.25 GHz and 5.775 GHz, with 200 MHz of varactor-supplied tuning range. The simulated output voltage swing is 2.0 V peak-to-peak and is kept constant between sub-bands by an active PMOS load integrated into the biasing circuitry. The second VCO was optimized for a high output voltage swing by replacing the current biasing circuit with a degenerating inductor. This design targeted three center frequencies, 5.2 GHz, 5.3 GHz, and 5.775 GHz, with 100 MHz of tuning range. This design has an output peak-to-peak voltage swing of 5.2 V but consumes an average of 16.5 mA from a 1.8 V supply. The two fabricated circuits exhibit tuning ranges similar to the simulated results; however, the center frequencies of each decrease due to interconnect parasitics there were unaccounted for in the designs. The measured center frequencies are 4.4 GHz and 5.37 GHz for the first design, and 4.4 GHz and 4.7 GHz for the second design (with one state inoperative due to a faulty switch). The phase noise of the fabricated VCO designs was limited primarily by the low quality factor (Q-factor) of the on-chip LC tank circuits. Oscillators referenced with high-Q off-chip components such as quartz crystal references and surface acoustic wave (SAW) resonators in a PLL can exhibit much improved performance; however, these off-chip components add packaging/assembly cost and higher bill of materials, impedance matching issues, and parasitics that can significantly affect performance for RF applications. Thus, there is tremendous incentive for integrating high-Q components on-chip with the eventual goal of consolidating all of the RF/analog/digital components onto a single wireless-enabled chip, commonly called RF system-on-a-chip (SoC). Microelectromechanical (MEM) resonators have received significant attention based on their ability to provide high on-chip Q-factors at RF frequencies using fabrication techniques that are compatible with modern IC processes. MEM resonators transduce electrical signals into extremely low-loss mechanical vibration and vice versa. Consequently, this thesis also describes the modeling, simulation, and fabrication of contour-mode disk-shaped MEM resonators. This resonator geometry is capable of providing high-Q oscillation at frequencies exceeding 1 GHz at sizes easily within the limits of modern photolithography techniques. Finite element analysis is used to predict the frequency response of disk resonators under various operating conditions and to determine variables that are most critical to the resonator design. A silicon-on-insulator (SOI) fabrication process for constructing the disk is also discussed. Finally, the possible future integration of MEM resonators with multiband VCOs in a common IC process is proposed. / Master of Science
12

New Concepts in Front End Design for Receivers with Large, Multiband Tuning Ranges

Hasan, S. M. Shajedul 30 April 2009 (has links)
This dissertation presents new concepts in front end design for receivers with large, multiband tuning ranges. Such receivers are required to support large bandwidths (up to 10's of MHz) over very large tuning ranges (30:1 and beyond) with antennas that are usually narrowband, or which at best support multiple narrow bandwidths. Traditional techniques to integrate a single antenna with such receivers are limited in their ability to handle simultaneous channels distributed over very large tuning ranges, which is important for frequency-agile cognitive radio, surveillance, and other applications requiring wideband or multiband monitoring. Direct conversion architecture is gaining popularity due to the recent advancements in CMOS--based RFIC technology. The possibility of multiple parallel transceivers in RF CMOS suggests an approach to antenna--receiver integration using multiplexers. This dissertation describes an improved use of multiplexers to integrate antennas to receivers. First, the notion of sensitivity--constrained design is considered. In this approach, the goal is first to achieve sensitivity which is nominally dominated by external (environmental) noise, and then secondly to improve bandwidth to the maximum possible consistent with this goal. Next, a procedure is developed for designing antenna-multiplexer-preamplifier assemblies using this philosophy. It is shown that the approach can significantly increase the usable bandwidth and number of bands that can be supported by a single, traditional antenna. This performance is verified through field experiments. A prototype multiband multimode radio for public safety applications using these concepts is designed and demonstrated. / Ph. D.
13

Conception et réalisation d’un lien Light-Fidelity multi-utilisateur en intérieur / Conception and realization of an indoor multi-user Light-Fidelity link

Mohammedi Merah, Mounir 08 October 2019 (has links)
De nos jours, le nombre d'appareils connectés nécessitant un accès aux données mobiles est en augmentation constante. L'arrivée d'encore plus d'ojects multimédias connectés et la demande croissante d'informations par appareil ont mis en évidence les limites de la quatrième génération de réseaux cellulaires (4G). Cela a poussé au développement de nouvelles méthodes, dont la 5G. L'objectif est d'être en mesure de prendre en charge la croissance des systèmes portables, des capteurs ou des sysèmes associés à l'internet des objets (IoT). La vision derrière la 5G est de permettre une société entièrement mobile et connectée avec une expérience consistente.Les petites cellules sont la base des normes de communication avancées telles que 4G et maintenant 5G. Ils résultent de l’utilisation de bandes de fréquences plus élevées pour l’accès radiofréquences (RF) afin de supporter de nouvelles normes et exigences croissantes en bande passante. La 5G utilise des ondes millimétriques et nécessite un déploiement dans un environnement urbain intérieur et urbain dense, ce qui peut s'avérer être un défi. C’est là que la 5G devra inclure des solutions de réseau hybrides et pouvoir coexister avec d’autres technologies d’accès sans fil. La communication par lumière visible (VLC) s’inscrit dans ce moule puisque la lumière visible correspond à la bande comprise entre 400 et 800 THz. Le spectre disponible est des milliers de fois plus large que le spectre RF et il n’interfère pas avec celui-ci. Le principe se base sur la combinaison de l'éclairage avec un lien de communication pouvant atteindre des dizaines de gigabits par seconde. Le potentiel est d’offrir un complément à la 5G dans un réseau hybride, offrant une vitesse élevée, aucune interférence et une sécurité accrue au prix d’une couverture limitée et d’une faible maturité technologique.L’objectif de cette thèse est donc de proposer et d’évaluer une implémentation expérimentale d’un système VLC en intérieur et multi-utilisateurs afin de répondre aux objectifs de la configuration light-fidelity (Li-Fi) dans le contexte d’une petite cellule. La première étape de cette étude est un état de l'art détaillé sur le principe de VLC dans la communication sans fil en intérieur et de l’accès multi-utilisateur. Cela permet de mieux expliquer le concept de notre désign et de comparer notre approche aux travaux existants. La deuxième étape consiste en une analyse des principes et des hypothèses pour le système VLC multi-utilisateurs en intérieur portant à la fois sur la technique de modulation et sur les schémas d’accès multi-utilisateurs. Les conclusions tirées des analyses théoriques et numériques servent de base pour la suite du travail. La troisième étape consiste en plusieurs analyses expérimentales sur l'optimisation des performances de diffusion pour un utilisateur unique, puis sur les performances multi-utilisateurs du système à l'aide de divers schémas d'accès. Le débit total avec une LED blanche commerciale atteint 163 Mb/s avec un taux d'erreur réduit d'un facteur de 3,55 grâce au processus d'optimisation des performances. Cette technique a l'avantage d'augmenter la flexibilité pour un scénario avec plusieurs utilisateurs sans augmenter la complexité car seuls les paramètres des filtres de modulation sont altérés. La taille de la cellule obtenue est de 4.56 m² à une distance de 2,15 mètres du transmetteur. Le capacité peut atteindre jusqu'à 40 utilisateurs, ou 40.62 Mb/s dans un scénario à 4 utilisateurs. Il est donc démontré que le système proposé pourrait fonctionner comme une cellule à une distance réaliste, avec un débit de données élevé et la capacité de répondre aux besoins d’un grand nombre d’utilisateurs tout en limitant les coûts de mise en œuvre. / Nowadays, the number of connected devices requiring access to mobile data is considerably increasing. The arrival of even more connected multimedia objects and the growing demand for more information per device highlighted the limits of the fourth generation of broadband cellular networks (4G). This pushed for the development of new methods, one of which is 5G. The goal is to be able to support the growth of wearable, sensors, or related internet-of-object (IoT) systems. The vision behind 5G is to enable a fully mobile and connected society with a consistent experience. In consequence, there is a fundamental need to achieve a seamless and consistent user experience across time and space.Small cells are the basis of advanced communications standards such as 4G and now, 5G. They exist as a result of using higher frequency bands for RF access in order to support new standards and the increasing demands in bandwidth. 5G use millimeter waves and requires a deployment across indoor and dense urban environment which may prove to be a challenge. This is where 5G will need to include hybrid networking solutions and be able to coexist with other wireless access technologies. Visible light communication (VLC) fits into that mold since visible light corresponds to the band between 400 and 800 THz. The available spectrum is multiple thousand times the size of the RF spectrum and it does not interfere with it. The technique combines illumination with communication at possibly tens of gigabits per second. It has the potential to offer a synergistic pairing with 5G in a hybrid network, offering high speed, no interferences, and more security at the cost of limited coverage and low technological maturity.The goal of this thesis is thus to propose and evaluate an experimental implementation of an indoor multi-user VLC system in order to answer the objectives of Li-Fi setup in the context of a small cell. The first step of this study is a detailed state-of-the-art on VLC in indoor wireless communication and multi-user access. It allows the design of our work to be better explained and to compare our approach with existing works. The second step is an analysis of the principles and hypothesis supporting the indoor multi-user VLC system in the study both on the modulation technique and the multi-user access schemes. The conclusions drawn from theoretical and numerical analysis are used as a basis for the rest of the work. The third step is the experimental setup investigations on the single-user broadcast performances optimization and then on the multi-user performances of the system using various schemes. The total throughput using an off-the-shelf white LED reaches 163 Mb/s with a bit-error rate decreased by a factor of 3.55 thanks to the performance optimization process. This technique has the advantage of increasing the flexibility for a multi-access scenario while not augmenting the complexity as it only optimizes the modulation filter parameters. The multi-user access is obtained for a cell size of 4.56 m² at a distance of 2.15 meter away from the transmitter. The user capacity can reach up to 40 users, or 40.62 Mb/s in a 4-user scenario. It is thus demonstrated that the proposed system could function as a cell at a realistic range, with high data rate and the ability to provide for a large amount of users while limiting the cost of implementation.
14

Seleção de múltiplos planos em tomografia por ressonância magnética nuclear / Simultaneous multislice slection in magnetic resonance tomography

Frare Junior, Pedro Luiz 20 July 1990 (has links)
Apresentamos um estudo e a implementação de três técnicas destinadas a seleção de múltiplos planos, com objetivo de otimizar a tomografia por RMN. A primeira utiliza a excitação simultânea de múltiplos planos, sendo cada plano codificado com uma fase pré-determinada e a informação destes decodificada a posteriori através da combinação linear dos dados de n experimentos realizados. A segunda utiliza-se da excitação simultânea de múltiplos planos, como na técnica anterior, porém esses planos são adquiridos na presença de um gradiente de leitura oblíquo, que permite a obtenção simultânea dos sinais destes planos sem necessidade de pós-processamento. A terceira técnica usa a multiplexação de freqüências de excitação no tempo, isto é, diferentemente das teorias anteriores, excitam-se diferentes planos sucessivamente, durante o tempo de repetição de uma seqüência de aquisição, permitindo a aquisição de vários planos ao tempo de um único. A construção e o uso de um phantom destinado a caracterização do equipamento também é discutida. Esse phantom possibilita por exemplo: a determinação da largura do plano selecionado, o espaçamento entre os planos e o perfil destes, entre outros. Abordamos também, vários aspectos técnicos necessários a uma melhor performance do tomógrafo, tais como: circuitos de recepção e ressoadores. Apresentamos finalmente, uma discussão introdutória e os primeiros resultados experimentais já obtidos com a técnica de excitação adiabática com gradiente modulado (GMAX), utilizando bobinas de superfície / We present the study and the implementation of three techniques HIS for the selection of multi-slice, aiming the optimization of the NMR tomography . The first technique uses the simultaneous excitation of multiple slices, being each plane encoded with a pre determined phase for a latter decodification of the information by the linear combination of n experiments. The second one makes use of the multi-slice simultaneous excitation, like the first one, but the slices are acquired in the presence of an oblique reading gradient , which provides us the multi-slice signal without any further computer processing. The third technique uses frequency multiplexed excitation, that is, different slices are successively excited during the repetition time of an acquisition sequence, making possible multi-slice acquisition at the same time of a single slice The construction and the use of a phantom for the equipment characterizations are discussed too. With this phantom we can determine the thickness of the selected slice, the spacing between the slices and the their shapes. Many technical aspects necessary for an improvement of the tomography performance, like reception circuits and resonators, are discussed. At last, we present a brief introduction to the gradient modulated adiabatic excitation (GMAX) technique and the first results ever obtained with it, using surface coils
15

Investigação da supercondutividade em compostos do sistema Zr-V-Ga / Investigation of superconductivity in compounds of the Zr-V-Ga system

Carvalho, Danyela Cardoso 26 October 2018 (has links)
Este trabalho teve como objetivo a investigação de novos materiais promissores para a supercondutividade presentes no sistema ternário do Zr-V-Ga. Os resultados apresentados de magnetização, resistividade e calor específico, mostram de forma inequívoca que o Zr3V2Ga4 é um novo material supercondutor com temperatura crítica de transição supercondutora nas proximidades de 14,3K. O estudo do composto ZrV2Ga4 mostrou que a supercondutividade é revelada com temperatura crítica de aproximadamente 14,2 K. Medidas de calor especifico realizadas nessas amostras evidenciam de forma clara manifestações de supercondutores multibandas. Outra investigação importante realizada foi a substituição parcial de vanádio por titânio na estequiometria do composto ZrV2Ga4 representado pela composição global ZrV2-xTixGa4, revela que a substituição parcial de vanádio por titânio suprime a supercondutividade neste composto. Isto é mais evidente quando a substituição total de V por Ti suprime totalmente o comportamento supercondutor. Estes resultados sugerem que a supercondutividade pode ser dependente da unidade aniônica [V2Ga4]4-. Finalmente, esta dissertação mostra que o sistema ternário Zr-V-Ga é bastante rico em fases supercondutoras ainda não reportadas na literatura. / This work aimed to investigate new promising materials for superconductivity present in the ternary system of Zr-V-Ga. The presented results of magnetization, resistivity and specific heat, show unequivocally that the Zr3V2Ga4 is a new superconducting material with critical temperature of superconducting transition close to 14.3K. The study of compound ZrV2Ga4 showed that superconductivity is revealed at a critical temperature of approximately 14.2K. Specific heat measurements carried out on these samples clearly demonstrate manifestations of multiband superconductors. Another important investigation carried out was the partial substitution of vanadium by titanium in the stoichiometry of the ZrV2Ga4 compound represented by the global composition ZrV2-xTixGa4, reveals that the partial substitution of vanadium by titanium suppresses the superconductivity in this compound. This is most evident when the total substitution of V for Ti totally suppresses the superconducting behavior. These results suggest that superconductivity may be dependent on the anionic unit [V2Ga4]4-. The results presented in this dissertation reveal that the ternary system Zr-V-Ga is rich in new superconducting materials not reported yet.
16

Multiband LNA Design and RF-Sampling Front-Ends for Flexible Wireless Receivers

Andersson, Stefan January 2006 (has links)
The wireless market is developing very fast today with a steadily increasing number of users all around the world. An increasing number of users and the constant need for higher and higher data rates have led to an increasing number of emerging wireless communication standards. As a result there is a huge demand for flexible and low-cost radio architectures for portable applications. Moving towards multistandard radio, a high level of integration becomes a necessity and can only be accomplished by new improved radio architectures and full utilization of technology scaling. Modern nanometer CMOS technologies have the required performance for making high-performance RF circuits together with advanced digital signal processing. This is necessary for the development of low-cost highly integrated multistandard radios. The ultimate solution for the future is a software-defined radio, where a single hardware is used that can be reconfigured by software to handle any standard. Direct analog-to-digital conversion could be used for that purpose, but is not yet feasible due to the extremely tough requirements that put on the analog-to-digital converter (ADC). Meanwhile, the goal is to create radios that are as flexible as possible with today’s technology. The key to success is to have an RF front-end architecture that is flexible enough without putting too tough requirements on the ADC. One of the key components in such a radio front-end is a multiband multistandard low-noise amplifier (LNA). The LNA must be capable of handling several carrier frequencies within a large bandwidth. Therefore it is not possible to optimize the circuit performance for just one frequency band as can be done for a single application LNA. Two different circuit topologies that are suitable for multiband multistandard LNAs have been investigated, implemented, and measured. Those two LNA topologies are: (i) wideband LNAs that cover all the frequency bands of interest (ii) tunable narrowband LNAs that are tunable over a wide range of frequency bands. Before analog-to-digital conversion the RF signal has to be downconverted to a frequency manageable by the analog-to-digital converter. Recently the concept of direct sampling of the RF signal and discrete-time signal processing before analog-to-digital conversion has drawn a lot of attention. Today’s CMOS technologies demonstrate very high speeds, making the RF-sampling technique appealing in a context of multistandard operation at GHz frequencies. In this thesis the concept of RF sampling and decimation is used to implement a flexible RF front-end, where the RF signal is sampled and downconverted to baseband frequency. A discrete-time switched-capacitor filter is used for filtering and decimation in order to decrease the sample rate from a value close to the carrier frequency to a value suitable for analog-to-digital conversion. To demonstrate the feasibility of this approach an RF-sampling front-end primarily intended for WLAN has been implemented in a 0.13 μm CMOS process.
17

Reconfigurable Dielectric Resonator Antennas

Desjardins, Jason 21 March 2011 (has links)
With the increasing demand for high performance communication networks and the proliferation of mobile devices, significant advances in antenna design are essential. In recent years the rising demands of the mobile wireless communication industry have forced antennas to have increased performance while being limited to an ever decreasing footprint. Such design constraints have forced antenna designers to consider frequency agile antennas so that their behavior can adapt with changing system requirements or environmental conditions. Frequency agile antennas used for mobile handset applications must also be inexpensive, robust, and make use of electronic switching with reasonable DC power consumption. Previous works have addressed a number of these requirements but relatively little work has been performed on frequency agile dielectric resonator antennas (DRAs). The objective of this thesis is to investigate the use of DRAs for frequency reconfigurability. DRAs are an attractive option due to their compactness, very low losses leading to high radiation efficiencies (better than 95%) and fairly wide bandwidths compared to alternatives. DRA’s are also well suited for mobile communications since they can be placed on a ground plane and are by nature low gain antennas whose radiation patterns typically resemble those of short electric or magnetic dipoles. One way to electronically reconfigure a DRA, in the sense of altering the frequency band over which the input reflection coefficient of the antenna is below some threshold, is to partially load one face of the DRA with a conducting surface. By altering the way in which this surface connects to the groundplane on which the DRA is mounted, the DRA can be reconfigured due to changes in its mode structure. This connection was first made using several conducting tabs which resulted in a tuning range of 69% while having poor cross polarization performance. In order to address the poor cross polarization performance a second conducting surface was placed on the opposing DRA wall. This technique significantly reduced the cross polarization levels while obtaining a tuning range of 83%. The dual-wall conductively loaded DRA was then extended to include a full electronic implementation using PIN diodes and varactor diodes in order to achieve discrete and continuous tuning respectively. The two techniques both achieved discrete tuning ranges of 95% while the varactor implementation also had a continuous tuning range of 59% while both maintaining an acceptable cross polarization level.
18

Reconfigurable Dielectric Resonator Antennas

Desjardins, Jason 21 March 2011 (has links)
With the increasing demand for high performance communication networks and the proliferation of mobile devices, significant advances in antenna design are essential. In recent years the rising demands of the mobile wireless communication industry have forced antennas to have increased performance while being limited to an ever decreasing footprint. Such design constraints have forced antenna designers to consider frequency agile antennas so that their behavior can adapt with changing system requirements or environmental conditions. Frequency agile antennas used for mobile handset applications must also be inexpensive, robust, and make use of electronic switching with reasonable DC power consumption. Previous works have addressed a number of these requirements but relatively little work has been performed on frequency agile dielectric resonator antennas (DRAs). The objective of this thesis is to investigate the use of DRAs for frequency reconfigurability. DRAs are an attractive option due to their compactness, very low losses leading to high radiation efficiencies (better than 95%) and fairly wide bandwidths compared to alternatives. DRA’s are also well suited for mobile communications since they can be placed on a ground plane and are by nature low gain antennas whose radiation patterns typically resemble those of short electric or magnetic dipoles. One way to electronically reconfigure a DRA, in the sense of altering the frequency band over which the input reflection coefficient of the antenna is below some threshold, is to partially load one face of the DRA with a conducting surface. By altering the way in which this surface connects to the groundplane on which the DRA is mounted, the DRA can be reconfigured due to changes in its mode structure. This connection was first made using several conducting tabs which resulted in a tuning range of 69% while having poor cross polarization performance. In order to address the poor cross polarization performance a second conducting surface was placed on the opposing DRA wall. This technique significantly reduced the cross polarization levels while obtaining a tuning range of 83%. The dual-wall conductively loaded DRA was then extended to include a full electronic implementation using PIN diodes and varactor diodes in order to achieve discrete and continuous tuning respectively. The two techniques both achieved discrete tuning ranges of 95% while the varactor implementation also had a continuous tuning range of 59% while both maintaining an acceptable cross polarization level.
19

Internal Loop and Slot Antennas for Multiband Mobile Phone

Lin, Chun-I 29 April 2008 (has links)
In this dissertation, different from the conventional PIFA structure, the novel internal loop and slot antennas suitable for multiband mobile phone application are proposed. The loop antennas here use the technique of meandering the loop pattern to control the frequency ratio of the three resonant loop modes, and then the multiband operation can be obtained. For the slot antenna, different from the conventional slot antenna operating in a half-wavelength, the monopole slots antenna operating in it¡¦s quarter-wavelength mode are proposed. By properly adjusting the position of the monopole slot and the tuning stub of the microstrip feedline, the monopole slot antenna can achieve the multiband operation with a small occupied area in the mobile phone. In addition, the user¡¦s hand and head effects on the loop antenna are also studied. The obtained results indicate that, when the user¡¦s hand and head is close to or cover a certain portion of the antenna, large decrease in the antenna¡¦s radiation efficiency and great distortion in the antenna¡¦s radiation pattern will occur for all the three excited resonant modes of the loop antenna, no matter the unbalanced or balanced modes. Further, the efficiency drops caused by the user¡¦s hand and head over the GSM900 band are much larger than that over the GSM1800/1900 bands.
20

Multiband Chip Antennas for Mobile Handsets

Hsu, Ming-Ren 03 June 2008 (has links)
In this thesis, the study mainly focuses on developing multiband chip antennas for mobile handsets. Three possible solutions and their extended and integrated designs are presented. By using the dielectric material as the chip base, the chip antenna can be smaller in size and simpler in design. Most of the applications of the traditional chip antennas are rarely used as the mobile phone antenna and are commonly designed with a single operating band to cover GPS or WLAN operation only. Different types of the antennas are proposed in the thesis. The metal patterns of the monopole and loop antennas are manufactured inside the chip base with an occupied volume of generally less than 0.8 cc, some even as small as 0.3 cc. Electronic components like the lens of the embedded camera and the speaker can be integrated close to the chip antenna with little influences on the radiation characteristics. Consequently, the developed chip antennas are suitable for mobile communications and can cover not only GSM850/900/1800/1900/ UMTS bands but also WLAN/WiMAX bands.

Page generated in 0.0421 seconds