• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 16
  • 16
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bandwidth Enhancement of Balanced Folded Loop Antenna Design for Mobile Handsets Using Genetic Algorithms

Zhou, Dawei, Abd-Alhameed, Raed, Excell, Peter S. January 2008 (has links)
Yes / In this paper, a simple folded loop antenna (FLA) for handsets with relatively wide- band impedance, designed and optimized using genetic algorithms (GA). The FLA dimensions were optimized and evaluated using GA in collaboration with NEC-2 source code. Configuration of optimal FLA with excellent VSWR covering entirely the required GSM1800 frequency bands was found within the maximum generation. A prototype antenna was tested to verify and validate the GA-optimized antenna structure. The measured data have shown good agreement with predicted ones. Moreover, the capabilities of GA are shown as an e±cient optimisation tool for selecting globally optimal parameters to be used in simulations with an electromagnetic antenna design code, seeking convergence to designated specifications.
2

Electromagnetic compatibility in wireline communications

Lauder, David Maxwell January 2007 (has links)
This document is a thesis submitted in partial fulfilment of the requirements of the University of Hertfordshire for the degree of Doctor of Philosophy (Part Time) in 'EMC in Wire-line Communications' in the School of Electronic, Communication and Electrical Engineering at the University of Hertfordshire. It describes a programme of research into the modelling and measurement of radio frequency interference emissions from various communication networks including Power Line (Tele)communications (PLC/PLT) and Digital Subscriber Line (DSL). An introduction and literature review are followed by the results of practical measurements on installed networks. These measurements include antenna gain and Longitudinal Conversion Loss (LCL). Power line communication networks, splitterless DSL and home phoneline networks in buildings are studied and modelled and the models are compared with the measured results. Improved EMC test methods are also described, in particular the modelling and design of four types of portable antennas for use in radiated EMC measurements with improved sensitivity at frequencies up to 30 MHz. The first type is a set of three manually tuned loop antennas covering 100 kHz - 30 MHz. The second is a set of three loop antennas that cover a similar frequency range but with remote tuning via an optical fibre link, under the control of software which also controls an EMC measuring receiver. The third type is a larger (1.6 m diameter) tuned loop covering 1.75 - 10 MHz that allows the measuring system noise floor to be below the typical atmospheric noise floor. The fourth type is an electrically short dipole covering 10 - 30 MHz with improved matching. The protection requirements for various types of radio communication services are analysed and are compared with emission levels from various types of wireline communication network. A review of existing applicable EMC standards and standards under development is also presented.
3

Construction and evaluation of a magnetoresistive ground penetrating radar system

Blomqvist, Mikael January 2011 (has links)
This Master Thesis examines the possibility to apply a magnetometer developed by the Ångstöm space technology center to a small magnetic ground penetrating radar system with dimension in the order of one dm³. The magnetometer is broadband (DC-1GHz) and miniaturized. Loop antennas are used to transmit the signal.    A series of experiments have been performed in order to characterize the system, mainly examining the ability to determine distance to a target, using continuous sine wave signals and pulse trains. Standing wave patterns are formed between antenna and target and can be used for determining distance in the continuous case. When using a pulse train, the echo from the target could not be resolved using the current experiment set up, distance could therefore not be determined.
4

LTE/WWAN Planar Loop Antenna for Tablet Computer

Wei, Wan-Jhu 18 June 2011 (has links)
In this thesis, an LTE/WWAN planar loop antenna for tablet computer with a compact size of 75 ¡Ñ 12 mm2 is presented. The planar loop antenna comprises a printed loop strip and a patch monopole encircled therein. By embedding a printed distributed inductor in the loop strip, whose effect is similar to a chip inductor, a parallel resonant mode is generated owing to the contributed inductance of the distributed inductor and the contributed capacitance of the coupling between the loop strip and the patch monopole. The parallel resonant mode leads to increase input resistance of the 0.5-wavelength loop mode at the high-frequency tail and a zero reactance nearby the original resonance of the 0.5-wavelength loop mode, thereby resulting in a dual-resonance excitation to greatly enhance the bandwidth of the antenna¡¦s lower band for the LTE700/GSM850/900 operation. In addition, the patch monopole, which performs not only as a coupling feed but also an efficient radiator, provides a 0.25-wavelength resonant mode to combine with a higher-order resonant mode contributed by the printed loop strip to form the antenna¡¦s upper band to cover the GSM1800/1900/UMTS/LTE2300/2500 operation. Further, the required distance between the antenna and the testing flat phantom to meet the 1-g body SAR requirement of 1.6 W/kg is discussed. A comparison of the body SAR value of the planar loop antenna and the bent loop antenna is also discussed.
5

Design of Miniaturized Printed Circuit Board Antennas for 802.11n MIMO Applications

Tien, Mei 30 June 2011 (has links)
In rapid wireless communication technology development environment, antennas, the interface among many wireless communications, are an indispensable component for wireless systems. Miniaturization and functionality stability (high tolerance to environmental variations) of the antenna are fast becoming the design trends in research and development of wireless communication systems. They are also the main objectives of this thesis. In the first part of this thesis, we designed two highly stable antennas, which can be used in notebook computers or tablet PCs. The antenna has self-balanced characteristics, where the environmental interference is minimized, in its performance/functionality and patterns. The first antenna design, which can be easily integrated into an RF front-end board, employed capacitive coupling, differential feed printed loop configurations. Comparing to the existing differentially fed antenna design, our designs are much more miniaturized: the antenna size was 13 mm ¡Ñ 27 mm, the ground size was 4.5 mm ¡Ñ 4.5 mm. Implemented on a low-cost FR4 board, the antenna reduced the leakage current formed on coaxial transmission line, due to the advantage of being differentially fed. The second antenna design, fed by coaxial cable (single-ended fed), and without a ground plane, excited only self-balanced modes. The radiation patterns of higher modes in this antenna design are complete and without side lobes. This antenna design also has wide bandwidth characteristics: at 2.4 GHz it had 380 MHz, and at 5.2 GHz it had 1270 MHz bandwidths of high tolerance (stability). The actual measurement validated our simulation results. In the second part, MIMO antennas were designed for 802.11n wireless standards with maximum transfer rates of up to 300 Mbps. First, we designed two small single antennas, which were applied later in MIMO antenna designs. The size of our MIMO antenna designs was only 19 mm ¡Ñ 30.3 mm. In MIMO antenna designs, we employed two methods to increase the isolation between the two MIMO antennas: one manipulated the ground plane size, in which the isolation reached 18.9 dB; the other utilized a decoupling metal, where the overall isolation reached 24.6 dB in all of the operating frequencies, with the best isolation being 31.4 dB. The frequency of the coupling/decoupling for the decoupling metal can be adjusted independently; thus not affecting the original resonant frequency and the return loss of the two MIMO antennas. Actual measurements conducted in the microwave chamber (Reverberation Chamber) have verified the channel capacity were effectively increased, the total radiation efficiencies were about 60%, and the effective diversity gain was about 7dB. The MIMO antenna designs can practically and easily applied in the USB dongles.
6

Multiband Chip Antennas for Mobile Handsets

Hsu, Ming-Ren 03 June 2008 (has links)
In this thesis, the study mainly focuses on developing multiband chip antennas for mobile handsets. Three possible solutions and their extended and integrated designs are presented. By using the dielectric material as the chip base, the chip antenna can be smaller in size and simpler in design. Most of the applications of the traditional chip antennas are rarely used as the mobile phone antenna and are commonly designed with a single operating band to cover GPS or WLAN operation only. Different types of the antennas are proposed in the thesis. The metal patterns of the monopole and loop antennas are manufactured inside the chip base with an occupied volume of generally less than 0.8 cc, some even as small as 0.3 cc. Electronic components like the lens of the embedded camera and the speaker can be integrated close to the chip antenna with little influences on the radiation characteristics. Consequently, the developed chip antennas are suitable for mobile communications and can cover not only GSM850/900/1800/1900/ UMTS bands but also WLAN/WiMAX bands.
7

Studies of Very-Small-Size Mobile Communication Antennas

Chi, Yun-wen 19 January 2009 (has links)
In this dissertation, the study mainly focuses on small-size multiband mobile phone antennas for practical applications. Loop antenna is chosen to be the antenna type for designing the compact internal multiband antenna. Four antenna designs are presented, including ¡§Compact Multiband Folded Loop Chip Antenna for Small-Size Mobile Phone¡¨, ¡§Very-Small-Size Folded Loop Antenna with a Band-Stop Matching Circuit for Penta-Band Mobile Phone Application¡¨, ¡§Very-Small-Size Printed Loop Antenna for GSMDCSPCSUMTS Operation¡¨, and ¡§Printed Loop Mobile Phone Antenna with an Internal Printed Matching Circuit¡¨. The first two antenna designs occupy a volume of 1.0 cm3 and 0.6 cm3 respectively and the last two antenna designs are to be directly printed on the system circuit board of the mobile phone. Either of them can operate as a quad-band antenna for GSM/DCS/PCS/UMTS operation or as a penta-band antenna for GSM850/900/1800/1900/UMTS operation.
8

Medium Power, Compact Periodic Spiral Antenna

O'brien, Jonathan 01 January 2013 (has links)
Historical, well developed, procedures for RF design have minimal emphasis on exploring the third dimension due to the difficulty of fabrication. Recent material advancements applicable to 3D printing have brought about low-loss thermoplastics with excellent mechanical properties. Research into depositing conductive inks onto arbitrary 3D shapes has achieved resolutions better than 50 μm with conductivity values approaching that of copper cladding. The advancements in additive manufacturing have improved reliability and repeatability of three dimensional designs while decreasing fabrication time. With this design approach other considerations, such as stability and strength, can be concentrated on during the structure design to realize new shapes. The next step in the future of RF research will encompass designing and further understanding the benefits and consequences of using all three dimensions. This could include meandering an antenna element around other electronic components to make the overall package size smaller or integrating an antenna array into a wing. The design and analysis of the periodic spiral antenna (PSA) takes a look at a specific case of full volume utilization. In this application meandering in the z-dimension allowed the design to become smaller and more efficient than what is achievable with planar methods. This thesis will go into detail on the characterization of the periodic spiral antenna. To exemplify the benefits of meandering in the z-dimension a loop antenna is presented and benchmarked against other miniaturization techniques. Measured results of two different PSA models are presented and remarks on improving fabrication are given. When an antenna is used as a transmitter incident power will cause thermal generation so a study was conducted to understand how material properties can govern the amount of heat generated.
9

High-Directive Metasurface Printed Antennas for Low-Profile Applications

January 2020 (has links)
abstract: Since the advent of High Impedance Surfaces (HISs) and metasurfaces, researchers have proposed many low profile antenna configurations. HISs possess in-phase reflection, which reinforces the radiation, and enhances the directivity and matching bandwidth of radiating elements. Most of the proposed dipole and loop element designs that have used HISs as a ground plane, have attained a maximum directivity of 8 dBi. While HISs are more attractive ground planes for low profile antennas, these HISs result in a low directivity as compared to PEC ground planes. Various studies have shown that Perfect Electric Conductor (PEC) ground planes are capable of achieving higher directivity, at the expense of matching efficiency, when the spacing between the radiating element and the PEC ground plane is less than 0.25 lambda. To establish an efficient ground plane for low profile applications, PEC (Perfect Electric Conductor) and PMC (Perfect Magnetic Conductor) ground planes are examined in the vicinity of electric and magnetic radiating elements. The limitation of the two ground planes, in terms of radiation efficiency and the impedance matching, are discussed. Far-field analytical formulations are derived and the results are compared with full-wave EM simulations performed using the High-Frequency Structure Simulator (HFSS). Based on PEC and PMC designs, two engineered ground planes are proposed. The designed ground planes depend on two metasurface properties; namely in-phase reflection and excitation of surface waves. Two ground plane geometries are considered. The first one is designed for a circular loop radiating element, which utilizes a circular HIS ring deployed on a circular ground plane. The integration of the loop element with the circular HIS ground plane enhances the maximum directivity up to 10.5 dB with a 13% fractional bandwidth. The second ground plane is designed for a square loop radiating element. Unlike the first design, rectangular HIS patches are utilized to control the excitation of surface waves in the principal planes. The final design operates from 3.8 to 5 GHz (27% fractional bandwidth) with a stable broadside maximum realized gain up to 11.9 dBi. To verify the proposed designs, a prototype was fabricated and measurements were conducted. A good agreement between simulations and measurements was observed. Furthermore, multiple square ring elements are embedded within the periodic patches to form a surface wave planar antenna array. Linear and circular polarizations are proposed and compared to a conventional square ring array. The implementation of periodic patches results in a better matching bandwidth and higher broadside gain compared to a conventional array. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
10

Implanted Antennas and Intra-Body Propagation Channel for Wireless Body Area Network

Ibraheem, Ali Ahmed Younis 25 November 2014 (has links)
Implanted Devices are important components of the Wireless Body Area Network (WBAN) as a promising technology in biotelemetry, e-health care and hyperthermia applications. The design of WBAN faces many challenges, such as frequency band selection, channel modeling, antenna design, physical layer (PHY) protocol design, medium access control (MAC) protocol design and power source. This research focuses on the design of implanted antennas, channel modeling between implanted devices and Wireless Power Transfer (WPT) for implanted devices. An implanted antenna needs to be small while it maintains Specific Absorption Rate (SAR) and is able to cope with the detuning effect due to the electrical properties of human body tissues. Most of the proposed antennas for implanted applications are electric field antennas, which have a high near-zone electric field and, therefore, a high SAR and are sensitive to the detuning effect. This work is devoted to designing a miniaturized magnetic field antenna to overcome the above limitations. The proposed Electrically Coupled Loop Antenna (ECLA) has a low electric field in the near-zone and, therefore, has a small SAR and is less sensitive to the detuning effect. The performance of ECLA, channel model between implanted devices using Path Loss (PL) and WPT for implanted devices are studied inside different human body models using simulation software and validated using experimental work. The study is done at different frequency bands: Medical Implanted Communication Services (MICS) band, Industrial Scientific and Medical (ISM) band and 3.5 GHz band using ECLA. It was found that the proposed ECLA has a better performance compared to the previous designs of implanted antennas. Based on our study, the MICS band has the best propagation channel inside the human body model among the allowed frequency bands. The maximum PL inside the human body between an implanted antenna and a base station on the surface is about 90 dB. WPT for implanted devices has been investigated as well, and it has been shown that for a device located at 2 cm inside the human body with an antenna radius of 1 cm an efficiency of 63% can be achieved using the proposed ECLA. / Ph. D.

Page generated in 0.0698 seconds