1 |
Formulations for analysis of Probe-Fed printed antennas in SuperNECMathekga, Mmamolatelo E. 30 March 2009 (has links)
Formulations for analysis of printed antenna structures are derived and compared, to determine one to
implemented in SuperNEC based on the efficiency of its numerical solution in terms of memory usage and
solution time. SuperNEC is a software application for computing the response of electromagnetic structures
to electromagnetic fields. SuperNEC cannot be used for simulation of printed antenna structures. This is
because the formulation that is implemented in SuperNEC does not account for the effect of the substrates
that the radiating elements of the antenna structure are printed on, and it is also not intended for antenna
structures whose radiating elements are surfaces. Two MoM (Method of Moments) formulations and a FEM
(Finite Element Method)-MoM formulation are presented, together with different models for the antenna
feed. The FEM-MoM formulation is selected for implementation in SuperNEC because it is argued that it
is likely to be more memory efficient when compared to the MoM formulations, and also that less time
is required to fill the matrices resulting from the numerical solution of the formulation. The formulation
is implemented in a stand alone software application, which will be integrated into SuperNEC. Numerical
results that are computed using the software application are presented to illustrate correct implementation of
the formulation. The results are compared to: an exact solution, results from another publication, and results
computed using a different formulation. Good agreement is obtained in each case.
|
2 |
Slotted Printed Monopole UWB Antennas with Tuneable Rejection Bands for WLAN/WiMAX and X-Band CoexistenceElfergani, Issa T., Rodriguez, Jonathan, Otung, I., Mshwat, Widad F.A.G.A., Abd-Alhameed, Raed 15 March 2018 (has links)
Yes / Four versions of the compact hexagonal-shaped monopole printed antennas for UWB applications are presented. The first proposed antenna has an impedance bandwidth of 127.48 % (3.1 GHz to 14 GHz), which satisfies the bandwidth for ultra-wideband communication systems. To reduce the foreseen co-channel interference with WLAN (5.2GHz) and X-Band systems (10GHz), the second and third antennas type were generated by embedding hexagonal slot on the top of the radiating patch. The integration of the half and full hexagonal slots created notched bands that potentially filtered out the sources of interference, but were static in nature. Therefore, a fourth antenna type with tuneable-notched bands was designed by adding a varactor diode at an appropriate location within the slot. The fourth antenna type is a dual-notch that was electronically and simultaneously tuned from 3.2GHz to 5.1GHz and from 7.25GHz up to 9.9GHz by varying the bias voltages across the varactor. The prototypes of the four antenna versions were successfully fabricated and tested. The measured results have good agreement with the simulated results. / This work is carried out under the grant of the Fundacão para a Ciência e a Tecnologia (FCT - Portugal), with the reference number: SFRH/BPD/95110/2013.
|
3 |
A compact wideband printed antenna for free-space radiometric detection of partial dischargeZhang, Y., Lazaridis, P., Abd-Alhameed, Raed, Glover, Ian A. January 2016 (has links)
Yes / A microstrip line-fed wideband printed antenna is presented for radio detection of partial discharge (PD). The novel simple structure antenna has compact size of 24 × 20 × 0.16 cm3 (0.28λs × 0.23 λs × 0.002 λs) and suitable for radiometric PD wireless sensor nodes, where λs is the wavelength of the lowest frequency of the band (i.e., 0.35 GHz). The stepped and beveled radiation patch is used in combination with a slotted ground plane to achieve a wide fractional bandwidth of 119% (0.35 to 1.38 12 GHz) for a return loss better than 10 dB. Good radiation pattern characteristics are obtained across the frequency band of interest. The match between simulated and experimental results suggests that the design is sound and robust.
|
4 |
NOVEL PRINTED ANTENNA DESIGNS FOR WLAN APPLICATIONSWu, Tzuenn-yih 01 June 2004 (has links)
Novel printed monopole antennas, including diversity antennas, monopole array antennas and broadband antennas for WLAN operation, are experimentally studied and presented in this dissertation. These proposed antennas can be printed on dielectric substrates and practically integrated with system circuit boards by using printed circuit board technique. Also, the proposed antennas are low cost in fabrication and the reliability of system circuit boards can be improved. First, the design of the diversity antenna, which mainly comprises two substantially orthogonal printed monopoles and are placed symmetrically with respect to a protruded ground plane of T shape, shows good isolation between the two feeding ports of the proposed antenna. Second, the design of the printed array antenna, which comprises three equally-spaced equilateral-triangular monopoles, is proposed. Among the three monopoles, the center one has a larger size, which mainly controls the lower operation band, and the other two monopoles have a smaller size for higher operation band and show higher antenna gain and wider operating bandwidth. Finally, the quasi-self-complementary antenna is introduced. With compact size and wide bandwidth achieved, the proposed antenna is suitable for a mobile communication device, and can also provide good spatial diversity to combat the multi-path interference problem when mounting two proposed antennas appropriately spaced on a WLAN card.
|
5 |
Material analysis of wearabale hyperthermia applicatorRamasamy, Manoshika January 1900 (has links)
Master of Science / Department of Apparel, Textiles, and Interior Design / Minyoung Suh / The purpose of this study was to explore printed antennas as an alternative technique for applying hyperthermia treatment. The antenna consisted of a printed ground plane and a thin copper plate. The ground plane was made of silver conductive ink printed on a flexible substrate. The challenge of the printed ground plane was limited conductivity. Multi-layer printing was one of the ways to increase the conductivity of the printed trace. This study examined whether the multiple-layered printings on the ground plane influence the performance of the antenna. The ground plane printed on a flexible substrate was evaluated for its conductivity and capacity to handle the heat energy for the extended time duration at the elevated temperature.
This research was conducted in two experimental stages. The first stage of the experiment was designed to test conductivity of the ground plane. Ground planes were printed on a 32.5 mm × 17.0 mm substrate. The thickness and resistance of up to five layers of conductive printing were tested to verify how repeated printing improved the resistance and resistivity. Results showed that the multi-layering technique reduced the resistance of the printed trace, but statistically, the ground plane had no significant improvement in resistance beyond the triple layer printing. With an increase of the thickness, resistivity rather increased after the triple layer printing. The second stage of the experiment was used to assess the performance of the entire antenna. Antennas were fabricated using ground planes with triple and quintuple layers based on resistance and resistivity measurements. The antennas showed an acceptable level of performance in terms of antenna return loss and temperature elevation. The statistical analysis of return loss, power handling capability over the time, and temperature elevation was not significant among the antennas with triple and quintuple layered ground planes. Antennas were able to achieve 42 ˚C within 10 minutes at a 2cm deep location with the return loss of -13.76 dB. Most importantly, experimental results showed that antennas were able to handle 15 watt power without degrading the antenna performance. The antenna showed a successful performance in power handling and reaching the tumor temperature.
|
6 |
High-Directive Metasurface Printed Antennas for Low-Profile ApplicationsJanuary 2020 (has links)
abstract: Since the advent of High Impedance Surfaces (HISs) and metasurfaces, researchers
have proposed many low profile antenna configurations. HISs possess in-phase reflection, which reinforces the radiation, and enhances the directivity and matching bandwidth of radiating elements. Most of the proposed dipole and loop element designs that have used HISs as a ground plane, have attained a maximum directivity of 8 dBi. While HISs are more attractive ground planes for low profile antennas, these HISs result in a low directivity as compared to PEC ground planes. Various studies have shown that Perfect Electric Conductor (PEC) ground planes are capable of achieving higher directivity, at the expense of matching efficiency, when the spacing
between the radiating element and the PEC ground plane is less than 0.25 lambda. To establish an efficient ground plane for low profile applications, PEC (Perfect Electric Conductor) and PMC (Perfect Magnetic Conductor) ground planes are examined in the vicinity of electric and magnetic radiating elements. The limitation of the two ground planes, in terms of radiation efficiency and the impedance matching, are discussed. Far-field analytical formulations are derived and the results are compared with full-wave EM simulations performed using the High-Frequency Structure Simulator (HFSS). Based on PEC and PMC designs, two engineered ground planes are proposed.
The designed ground planes depend on two metasurface properties; namely in-phase reflection and excitation of surface waves. Two ground plane geometries are considered. The first one is designed for a circular loop radiating element, which utilizes a
circular HIS ring deployed on a circular ground plane. The integration of the loop element with the circular HIS ground plane enhances the maximum directivity up to 10.5 dB with a 13% fractional bandwidth. The second ground plane is designed for a square loop radiating element. Unlike the first design, rectangular HIS patches are utilized to control the excitation of surface waves in the principal planes. The final design operates from 3.8 to 5 GHz (27% fractional bandwidth) with a stable broadside maximum realized gain up to 11.9 dBi. To verify the proposed designs, a prototype was fabricated and measurements were conducted. A good agreement between simulations and measurements was observed. Furthermore, multiple square ring elements are embedded within the periodic patches to form a surface wave planar antenna array. Linear and circular polarizations are proposed and compared to a conventional square ring array. The implementation of periodic patches results in a better matching bandwidth and higher broadside gain compared to a conventional array. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
|
7 |
The systematic development of Direct Write (DW) technology for the fabrication of printed antennas for the aerospace and defence industryRaja, Sandeep January 2014 (has links)
Low profile, conformal antennas have considerable advantages for Aerospace and Military platforms where conventional antenna system add weight and drag. Direct Write (DW) technology has been earmarked as a potential method for fabricating low profile antennas directly onto structural components. This thesis determines the key design rules and requirements for DW fabrication of planar antennas. From this, three key areas were investigated: the characterisation of DW ink materials for functionality and durability in harsh environments, localised processing of DW inks and the optimisation of DW conductive ink material properties for antenna fabrication. This study mainly focused on established DW technologies such as micro-nozzle and inkjet printing due to their ability to print on conformal surfaces. From initial characterisation studies it was found that silver based micro-nozzle PTF inks had greater adhesion then silver nano-particle inkjet inks but had lower conductivity (2% bulk conductivity of silver as opposed to 8% bulk conductivity). At higher curing temperatures (>300??C) inkjet inks were able to achieve conductivities of 33% bulk conductivity of silver. However, these temperatures were not suitable for processing on temperature sensitive surfaces such as carbon fibre. Durability tests showed that silver PTF inks were able to withstand standard aerospace environments apart from Skydrol immersion. It was found that DW inks should achieve a minimum conductivity of 30% bulk silver to reduce antenna and transmission line losses. Using a localised electroplating process (known as brush plating) it was shown that a copper layer could be deposited onto silver inkjet inks and thermoplastic PTF inks with a copper layer exhibiting a bulk conductivity of 66% bulk copper and 57% bulk copper respectively. This was an improvement on previous electroless plating techniques which reported bulk copper conductivities of 50% whilst also enabling DW inks to be plated without the need for a chemical bath. One of the limitations of many DW ink materials is they require curing or sintering before they become functional. Conventional heat treatment is performed using an oven which is not suitable when processing DW materials onto large structural component. Previous literature has investigated laser curing as means of overcoming this problem. However, lasers are monochromatic and can therefore be inefficient when curing materials that have absorption bands that differ from the laser wavelength. To investigate this, a laser diode system was compared to a broadband spot curing system. In the curing trials it was found that silver inks could be cured with much lower energy density (by a factor of 10) using the broadband white light source. Spectroscopy also revealed that broadband curing could be more advantageous when curing DW dielectric ink materials as these inks absorb at multiple wavelengths but have low heat conductivity. Themodynamical modelling of the curing process with the broadband heat source was also performed. Using this model it was shown that the parameters required to cure the ink with the broadband heat source only caused heat penetration by a few hundred micro-metres into the top surface of the substrate at very short exposure times (~1s). This suggested that this curing method could be used to process the DW inks on temperature sensitive materials without causing any significant damage. Using a combination of the developments made in this thesis the RF properties of the DW inks were measured after broadband curing and copper plating. It was found that the copper plated DW ink tracks gave an equivalent transmission line loss to a copper etched line. To test this further a number of GPS patch antennas were fabricated out of the DW ink materials. Again the copper plated antenna gave similar properties to the copper etched antenna. To demonstrate the printing capabilities of the micro-nozzle system a mock wireless telecommunications antenna was fabricated on to a GRP UAV wing. In this demonstrator a dielectric and conductive antenna pattern was fabricated on to the leading edge of the wing component using a combination of convection curing and laser curing (using an 808nm diode laser).
|
8 |
NOVEL ANTENNA DESIGNS FOR WLAN OPERATIONS FOR A PDASu, Saou-Wen 12 June 2003 (has links)
Novel antennas attractive to fit in the internal space of a PDA (Personal Digital Assistant) for WLAN (Wireless Local Area Network) operations are presented in this dissertation. The proposed antennas have in common good impedance bandwidth (defined by 10 dB return loss), covering the dual-band WLAN operation in the 2.4/5.2 GHz bands. Two novel designs of foam-base surface-mount antennas are proposed in Chapters 2 and 3. Surface-mountable antennas, compared with ceramic antennas, are generally low cost in fabrication and rigid in nature. Low-profile and good dual-band operation of the proposed surface-mountable antennas can be observed in Chapters 2 and 3, and in addition, a few present-day WLAN bands at 5 GHz are covered in the operating bandwidths of the proposed foam-base surface-mountable shorted monopole antenna, shown in Chapter 3. Finally, in Chapter 4, a novel planar helical antenna printed on both surfaces of a dielectric substrate is demonstrated. This patent-pending helical antenna is very suitable to print and integrate on a circuit board of a PDA device for 2.4/5.2 GHz WLAN operation.
|
9 |
A Novel Unit Cell Antenna for Highly Integrated Phased Arrays in the SHF BandOgilvie, Timothy Bryan 01 June 2013 (has links) (PDF)
Phased arrays are electromagnetic antenna systems comprised of many radiating elements and processing electronics. Radiating elements are typically positioned in an orderly grid within the antenna aperture. In the receive mode of operation, radiating elements capture some of the signal energy from incoming radiation and guide these signals to processing electronics. Signals are filtered and amplified to maintain the desired sensitivity and complexly weighted using circuits with reconfigurable amplification gain and phase delay. Finally, all signals are combined. The summation of these complexly weighted spatial samples forms a spatial filter in the same way complexly weighted temporal samples establish a temporal filter in a finite impulse response discrete-time filter. Therefore, a phased array behaves like a spatial filter that strongly favors signals arriving from a specific direction. This favored direction represents the look angle of its beam, and the shape of the beam directly relates to the complex weights applied to the signals in the array. Analogous to the flexibility offered by digital filters, phased arrays enable agile beam steering, sidelobe control, and multiple independent beams. These capabilities have revolutionized radar, radioastronomy, and communication systems.
Phased arrays have increasingly employed printed circuit board (PCB) fabrication techniques and processes to maximize array channel density, achieve lower profile, and minimize component integration cost. A few applications which leverage these qualities include low-cost radar, mobile satellite communication (SATCOM), and intelligence, surveillance, and reconnaissance (ISR). Further, PCB-based arrays readily accommodate advancements in highly integrated beamforming radio frequency integrated circuits (RFICs), multi-chip modules, and RF micro-electro-mechanical system (MEMS) device technologies.
On a prior effort, an integrated unit cell design was developed for a PCB-based SATCOM array application. However, the design failed to meet the requirements. The primary objective of this work is to demonstrate an improved design using systematic microwave design techniques and modern analysis tools to meet the requirements for the same application. The proposed design must improve gain, bandwidth, size, and manufacturability over the prior design. Additionally, the design must be generally extensible to phased array implementations across the SHF band (3-30 GHz).
This work discusses the advantages of phased arrays over continuous apertures (e.g. reflectors), reviews phased array theory, and proposes an improved unit cell design. The proposed design is 35% smaller than a dime and consists of an orthogonally-fed, slot-coupled stacked patch antenna and dual-stage branchline coupler implemented in a multilayer PCB. Within the operating band from 10.7 to 14.5 GHz, the design achieves an average return loss of 15 dB, a uniform radiation pattern with peak realized gain of 4.8 to 7.0 dBic, cross-polarization level below -17 dB, and stable performance in a closely-spaced array. When configured in an array, the design supports X/Ku-band SATCOM in full-duplex operation, electronically rotatable polarization, and a 47.5˚ grating lobe free conical scan range. Further, a Monte Carlo analysis proves the design accommodates tolerances of material properties and manufacturing processes, overcoming a major challenge in PCB-based high frequency antenna design.
|
10 |
Model and design of small compact dielectric resonator and printed antennas for wireless communications applications : model and simulation of dialectric resonator (DR) and printed antennas for wireless applications : investigations of dual band and wideband responses including antenna radiation performance and antenna design optimization using parametric studiesElmegri, Fauzi O. M. January 2015 (has links)
Dielectric resonator antenna (DRA) technologies are applicable to a wide variety of mobile wireless communication systems. The principal energy loss mechanism for this type of antenna is the dielectric loss, and then using modern ceramic materials, this may be very low. These antennas are typically of small size, with a high radiation efficiency, often above 95%; they deliver wide bandwidths, and possess a high power handling capability. The principal objectives of this thesis are to investigate and design DRA for low profile personal and nomadic communications applications for a wide variety of spectrum requirements: including DCS, PCS, UMTS, WLAN, UWB applications. X-band and part of Ku band applications are also considered. General and specific techniques for bandwidth expansion, diversity performance and balanced operation have been investigated through detailed simulation models, and physical prototyping. The first major design to be realized is a new broadband DRA operating from 1.15GHz to 6GHz, which has the potential to cover most of the existing mobile service bands. This antenna design employs a printed crescent shaped monopole, and a defected cylindrical DRA. The broad impedance bandwidth of this antenna is achieved by loading the crescent shaped radiator of the monopole with a ceramic material with a permittivity of 81. The antenna volume is 57.0 37.5 5.8 mm3, which in conjunction with the general performance parameters makes this antenna a potential candidate for mobile handset applications. The next class of antenna to be discussed is a novel offset slot-fed broadband DRA assembly. The optimised structure consists of two asymmetrically located cylindrical DRA, with a rectangular slot feed mechanism. Initially, designed for the frequency range from 9GHz to 12GHz, it was found that further spectral improvements were possible, leading to coverage from 8.5GHz to 17GHz. Finally, a new low cost dual-segmented S-slot coupled dielectric resonator antenna design is proposed for wideband applications in the X-band region, covering 7.66GHz to 11.2GHz bandwidth. The effective antenna volume is 30.0 x 25.0 x 0.8 mm3. The DR segments may be located on the same side, or on opposite sides, of the substrate. The end of these configurations results in an improved diversity performance.
|
Page generated in 0.0961 seconds