Spelling suggestions: "subject:"multibeam bathymetry"" "subject:"multibeamn bathymetry""
1 |
Multibeam Observations of Mine Scour and Burial near Clearwater, Florida, Including a Test of the VIMS 2D Mine Burial ModelWolfson, Monica L 19 July 2005 (has links)
The ability to detect buried mines on the seafloor remains one of the most important tasks in mine countermeasures. As such, there is a vested interest in the development of predictive models of mine burial. This research was conducted in support of the Office of Naval Research Program in Mine Burial Prediction. Repeat high-resolution multibeam bathymetry data were collected over the Indian Rocks Beach (IRB) mine burial experiment site during January through March of 2003, in order to observe in situ scour and burial of instrumented inert mines and mine-like cylinders. These data were also used to test the validity of the VIMS 2D mine burial model.
A set of six high-resolution multibeam surveys were collected over the IRB experiment site. Three study sites within the IRB site were chosen: two fine sand sites, a shallow one located in ~ 13 meters of water depth and a deep site located in ~ 14 meters of water depth; and a coarse sand site in ~ 13 meters. Results from these surveys indicate that mines deployed in fine sand are upwards of 74.5% buried within two months of deployment. Mines deployed in the coarse sand showed a lesser amount of scour, burying until they presented roughly the same hydrodynamic roughness of the surrounding rippled bedforms. In general, scour around the mines formed pits ~ 0.30 meters deep, with the most pronounced scour occurring at the ends of the mine.
The multibeam data were also used to test the VIMS 2D mine burial model, which estimates percent burial of cylindrical mines based on predictions of wave-induced scour. The model proved valid for use in areas of fine sand, sufficiently predicting burial over the course of the experiment. In the area of coarse sand, the model greatly overpredicted the amount of burial. This is believed to be due to the presence of ripples around the mines, which affect local bottom morphodynamics and are not accounted for in the model. This issue is currently being addressed by modelers.
|
2 |
Geomorphology of Submarine Spring West of Fort Myers, FloridaSaleem, Shihadah M. 17 July 2007 (has links)
In March of 2000, March of 2001, and April of 2002, multibeam bathymetry and backscatter data were collected, which revealed several low-temperature hydrothermal submarine springs in the Mudhole Submarine Springs (MHSS) area that were investigated by SCUBA divers. High-resolution multibeam sonar provides a precise way of defining the geomorphology of the seafloor. The bathymetry data were used to understand (1) vent geomorphology and how it varied from vent to vent; (2) spatial patterns of active vents compared to extinct vents and known land springs identified by Kohout (1977) and Breland (1980); and (3) potential correlations between geochemical and geomorphological characteristics of the vents in the study area. SCUBA observations show that MHSS, Spring #3, New Spring, Northern Rusty, Rusty, and Near Rusty are active springs, while Dormant Spring and Sinister Spring were extinct or inactive at the time of the March 2001 cruise.During the April 2002 cruise the locations of Rusty Spring, New Spring and MHSS were confirmed. Two submarine springs, Creature Hole and Sparky Lee were also confirmed. Spring #3 is the deepest spring and Dormant Spring is the shallowest.
There appears to be a rough spatial correlation between vents located on land and the vents on the seafloor, in which all known vents are either to the west or north of Lake Okeechobee. Vent distribution in the MHSS study area appears to correlate with the structural pattern of the local seafloor. Backscatter data and SCUBA observations show that fine to medium grain siliciclastic sediment bands overlie limestone hardbottom in a NE-SW orientation. Although vent geomorphologies are generally distinctive, vent activities generally correlate with the steepness of vent depressions.Most active vents had slopes of 6 degrees or greater, with the exception of Rusty Spring and Near Rusty Spring whose slopes ranged from 2.5 degrees and 6 degrees; whereas all the inactive vents had slopes of 5 degrees or less. Most active vents have "V"-shaped profiles versus the "U"-shaped profiles of most of the inactive vents. The inactive springs have shallower maximum depths and shallower ambient seafloor depths than the active vents.
|
3 |
Resolving relationships between deep-sea benthic diversity and multi-scale topographic heterogeneityDu Preez, Cherisse 02 January 2015 (has links)
Resolving diversity patterns and their underlying drivers has application for both ecological theory and ocean management. Because seafloor characteristics are often used to assess bottom habitat, I examined the relationship between deep-sea benthic (bottom-living) diversity and multi-scale topographic heterogeneity. Most work occurred on the Canadian Pacific continental shelf at Learmonth Bank with additional sites in Strait of Georgia (BC) and Gulf of Maine (Atlantic shelf). High-resolution species distribution and seafloor data were annotated from remotely operated vehicle benthic imagery surveys while large-scale seafloor data were derived from multibeam sonar.
New method development to address problems of current methods and to facilitate comparison among ecosystems is a major outcome. My new MiLS method (microtopographic laser scanning) can profile the deep seafloor at a resolution of ~1-2 cm with high accuracy and precision. I also developed a new ACR (arc-chord ratio) rugosity index as a measure of 3-D topographic heterogeneity that is simple, accurate and highly versatile.
Model systems and scales vary among my studies but results consistently yield a positive relationship between diversity and topographic heterogeneity and identify bottom hydrodynamics as an important underlying driver. Rockfish Sebastes spp. associate with higher seafloor rugosity non-randomly and select for deep-sea corals and sponges over inert substrata alone. Data indicate that degradation of biogenic structures is a long-term detriment to rockfish species. Gorgonian coral- and sponge-dominant biotopes strongly associate with a single substratum type. These relationships were used to map coral and sponge distributions. This work, which collectively adds new information on the ecological relevance and distribution of corals and sponges, is pertinent to the conservation and management of fish stocks and vulnerable marine ecosystems. Epibenthic community variables abundance, richness, and Shannon diversity positively correlated with both the local microtopographic heterogeneity on a scale of 10 m2 and with the surrounding regional large-scale topographic heterogeneity on scales of 25 to 250,000 m2. Relationships were strongest between epibenthic community variables and the largest scale rugosity and were used to generate and test predictive diversity models. Where management strategies rely on surrogate measures in data-poor areas, mapping benthic diversity using ACR rugosity will provide good indicators.
Although bottom hydrodynamics is consistently identified as an underlying driver of epibenthic patterns related to topographic heterogeneity, data suggest the nature of the relationship varies across spatial scales. At small scales, high topographic heterogeneity likely increases diversity by increasing the number of available niches (including hydrodynamic gradients; e.g., the abrupt vertical rugosity created by tall corals and sponges provides rockfish refuge from currents) while at large scales, high topographic heterogeneity increases local diversity less directly through distant hydraulic events that alter bottom flow hydrodynamics. / Graduate / 0329 / 0416 / 0799 / cdupreez@uvic.ca
|
4 |
Neotectonics, Seismic and Tsunami Hazards, Viti Levu, Fiji.Rahiman, Tariq Iqbal Hamid January 2006 (has links)
Viti Levu, the main island of Fiji, is located in a seismically active area within the Fiji Platform - a remnant island arc that lies in a diffuse plate boundary zone between the Pacific and Australian tectonic plates in the southwest Pacific. The southeast coast of Viti Levu is a highly developed and populated part of Fiji and is vulnerable to the effects of large earthquakes that are expected to occur both onshore and offshore. The structural framework and the origin of seismicity within the Fiji Platform, as well as the seismic and tsunami hazards of central and southeast Viti Levu are investigated. The upper crust of southeast Viti Levu is dissected by several intersecting fault/lineament zones. These are mapped from remote sensing imagery of the surface (topography, radar, and aerial photos) and of the basement (magnetic), and have been subject to rigorous statistical tests of reproducibility and verification with field mapped fault data. Lineaments on the various imagery correlate with faults mapped in the field and show spatial continuity between and beyond mapped faults, thereby providing a fuller coverage of regional structural patterns than previously known. Some fault/lineament zones extend beyond the coastline to the offshore area of southeast Viti Levu. Here high resolution SeaBAT 8160 multibeam bathymetry data and seismic reflection data show that the fault zones occur along, and exert control on the locations of a number of linear submarine canyons. The morpho-structural expression of these canyons are contiguous with fault controlled physiographic features mapped on the nearshore marginal shelf (rectilinear bays and peninsulas, reef passages) and on land (fault valleys, slope and drainage alignments forming lineaments). The canyons are considered to have developed from several cycles of downslope incising and infilling events, whilst their positions were still primarily controlled by zones of weakness created by the fault zones. The principal fault sets in southeast Viti Levu represent generations of regional tectonic faulting that pervaded the Fiji Platform during and after disruption of the proto Fijian arc in the Middle to Late Miocene. These fault sets combine to form a complex network of interlocking faults creating a fault mesh that divides the upper crust into a number of fault blocks ranging from ~2 to 30 km. It is inferred that the fault mesh evolved throughout the Neogene as a response to the anticlockwise rotation of the Fiji Platform through progressive development of different fault sets and intervening crustal block rotations. Regional tectonic deformation is presently accommodated in a distributed manner through the entire fault mesh. Low magnitude earthquakes (<M4) occur regularly and may represent ruptures along short linking segments of the fault mesh, while infrequent larger earthquakes (>M4) may result from complex rupture propagation through several linking fault segments of the mesh that lie close to optimum stress orientations. This interpreted model of distributed deformation through the fault mesh for southeast Viti Levu is inferred to be characteristic of the style of active deformation that occurs throughout the entire Fiji Platform. Seismic activity is primarily responsible for triggering submarine landslides that occur on the southeastern slope of Viti Levu. These slides typically occur on the outer barrier reef edge, as well as in submarine canyon heads and walls, and in the mid slope areas. They are characteristically translational and lack bathymetric evidence for displaced masses. Morphometric analysis and empirical modelling, show that slides triggered at shallow water depths, within 5 km of the coastline, at the outer barrier reef edge and submarine canyon heads, produce the largest near-field tsunami amplitudes. Such slides are interpreted to represent a significant local tsunami hazard. A detailed case study of the destructive 1953 Suva tsunami that followed the Ms 6.75 Suva earthquake, reveals that the source of this tsunami was a 60 million cubic metre submarine landslide at the head of the Suva Canyon, 4 km to the WSW of Suva City. A test simulation of this tsunami using the Geowave tsunami generation, propagation and inundation model, closely replicates the wave heights and arrival times recorded in 1953. This simulation also reveals that high variability in tsunami impact over short coastal distances of southeast Viti Levu is attributable to the complex interplay of wave propagation with the barrier reef system, erratic lagoon bathymetry and the irregularly shaped coastline. A predictive simulation using Geowave, based on an incipient failure in the 1953 source area and on a potentially worse case scenario event at or near high-tide, is used to show a maximum vertical run up of at least 4 m and a maximum horizontal inundation level of at least 400 m at the Suva coast. The seismic hazard of five sites on Viti Levu, including Suva City, Navua and Nausori Towns, and the Monsavu and Nadarivatu dam sites, is evaluated using a deterministic approach, and seven newly identified crustal fault earthquake source structures. The maximum magnitudes interpreted for these structures, estimated using empirical relationships, range from Mw 6.8 to 7.6. The Suva Canyon Fault, the Naqara Fault, the Mavuvu/Fault Lineament Zone and the Nasivi Fault provide the controlling maximum credible earthquakes (CMCE) at all the five sites. The CMCE peak ground acceleration values for Suva City range from 0.4g to 0.6g, for Nausori Town from 0.18g to 0.2g, for Navua Town from 0.27g to 0.32g, for Monasavu from 0.39g to 0.42g, and for Nadarivatu from 0.23g to 0.33g. The horizontal spectral accelerations at a period equal to 0.2 seconds, calculated using the CMCEs, are comparable to accelerations derived by probabilistic methods that have return periods between 50 and over 1000 years.
|
5 |
Tidal sedimentology and geomorphology in the central Salish Sea straits, British Columbia and Washington StateMullan, Sean 03 January 2018 (has links)
Intra-archipelago waterways, including tidal strait networks, present a complex set of barriers to, and conduits for sediment transport between marine basins. Tidal straits may also be the least well understood tide-dominated sedimentary environment. To address these issues, currents, sediment transport pathways, and seabed sedimentology & geomorphology were studied in the central Salish Sea (Gulf and San Juan Islands region) of British Columbia, Canada and Washington State, USA. A variety of data types were integrated: 3D & 2D tidal models, multibeam bathymetry & backscatter, seabed video, grab samples, cores and seismic reflection. This dissertation included the first regional sediment transport modelling study of the central Salish Sea. Lagrangian particle dispersal simulations were driven by 2D tidal hydrodynamics (~59-days). It was found that flood-tide dominance through narrow intra-archipelago connecting straits resulted in the transfer of sediment into the inland Strait of Georgia, an apparent sediment sink. The formative/maintenance processes at a variety of seabed landforms, including a banner bank with giant dunes, were explained with modelled tides and sediment transport. Deglacial history and modern lateral sedimentological and morphological transitions were also considered. Based on this modern environment, adjustments to the tidal strait facies model were identified. In addition, erosion and deposition patterns across the banner bank (dune complex) were monitored with 8-repeat multibeam sonar surveys (~10 years). With these data, spatially variable bathymetric change detection techniques were explored: A) a cell-by-cell probabilistic depth uncertainty-based threshold (t-test); and B) coherent clusters of change pixels identified with the local Moran's Ii spatial autocorrelation statistic. Uncertainty about volumetric change is a considerable challenge in seabed change research, compared to terrestrial studies. Consideration of volumetric change confidence intervals tempers interpretations and communicates metadata. Techniques A & B may both be used to restrict volumetric change calculations in area, to exclude low relative bathymetric change signal areas. / Graduate / 2018-12-07
|
Page generated in 0.0369 seconds