• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 52
  • 15
  • 15
  • 10
  • 8
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 217
  • 115
  • 63
  • 60
  • 52
  • 47
  • 43
  • 38
  • 38
  • 34
  • 30
  • 29
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Ghosts and machines : regularized variational methods for interactive simulations of multibodies with dry frictional contacts

Lacoursière, Claude January 2007 (has links)
<p>A time-discrete formulation of the variational principle of mechanics is used to provide a consistent theoretical framework for the construction and analysis of low order integration methods. These are applied to mechanical systems subject to mixed constraints and dry frictional contacts and impacts---machines. The framework includes physics motivated constraint regularization and stabilization schemes. This is done by adding potential energy and Rayleigh dissipation terms in the Lagrangian formulation used throughout. These terms explicitly depend on the value of the Lagrange multipliers enforcing constraints. Having finite energy, the multipliers are thus massless ghost particles. The main numerical stepping method produced with the framework is called SPOOK.</p><p>Variational integrators preserve physical invariants globally, exactly in some cases, approximately but within fixed global bounds for others. This allows to product realistic physical trajectories even with the low order methods. These are needed in the solution of nonsmooth problems such as dry frictional contacts and in addition, they are computationally inexpensive. The combination of strong stability, low order, and the global preservation of invariants allows for large integration time steps, but without loosing accuracy on the important and visible physical quantities. SPOOK is thus well-suited for interactive simulations, such as those commonly used in virtual environment applications, because it is fast, stable, and faithful to the physics.</p><p>New results include a stable discretization of highly oscillatory terms of constraint regularization; a linearly stable constraint stabilization scheme based on ghost potential and Rayleigh dissipation terms; a single-step, strictly dissipative, approximate impact model; a quasi-linear complementarity formulation of dry friction that is isotropic and solvable for any nonnegative value of friction coefficients; an analysis of a splitting scheme to solve frictional contact complementarity problems; a stable, quaternion-based rigid body stepping scheme and a stable linear approximation thereof. SPOOK includes all these elements. It is linearly implicit and linearly stable, it requires the solution of either one linear system of equations of one mixed linear complementarity problem per regular time step, and two of the same when an impact condition is detected. The changes in energy caused by constraints, impacts, and dry friction, are all shown to be strictly dissipative in comparison with the free system. Since all regularization and stabilization parameters are introduced in the physics, they map directly onto physical properties and thus allow modeling of a variety of phenomena, such as constraint compliance, for instance.</p><p>Tutorial material is included for continuous and discrete-time analytic mechanics, quaternion algebra, complementarity problems, rigid body dynamics, constraint kinematics, and special topics in numerical linear algebra needed in the solution of the stepping equations of SPOOK.</p><p>The qualitative and quantitative aspects of SPOOK are demonstrated by comparison with a variety of standard techniques on well known test cases which are analyzed in details. SPOOK compares favorably for all these examples. In particular, it handles ill-posed and degenerate problems seamlessly and systematically. An implementation suitable for large scale performance and accuracy testing is left for future work.</p>
212

Ghosts and machines : regularized variational methods for interactive simulations of multibodies with dry frictional contacts

Lacoursière, Claude January 2007 (has links)
A time-discrete formulation of the variational principle of mechanics is used to provide a consistent theoretical framework for the construction and analysis of low order integration methods. These are applied to mechanical systems subject to mixed constraints and dry frictional contacts and impacts---machines. The framework includes physics motivated constraint regularization and stabilization schemes. This is done by adding potential energy and Rayleigh dissipation terms in the Lagrangian formulation used throughout. These terms explicitly depend on the value of the Lagrange multipliers enforcing constraints. Having finite energy, the multipliers are thus massless ghost particles. The main numerical stepping method produced with the framework is called SPOOK. Variational integrators preserve physical invariants globally, exactly in some cases, approximately but within fixed global bounds for others. This allows to product realistic physical trajectories even with the low order methods. These are needed in the solution of nonsmooth problems such as dry frictional contacts and in addition, they are computationally inexpensive. The combination of strong stability, low order, and the global preservation of invariants allows for large integration time steps, but without loosing accuracy on the important and visible physical quantities. SPOOK is thus well-suited for interactive simulations, such as those commonly used in virtual environment applications, because it is fast, stable, and faithful to the physics. New results include a stable discretization of highly oscillatory terms of constraint regularization; a linearly stable constraint stabilization scheme based on ghost potential and Rayleigh dissipation terms; a single-step, strictly dissipative, approximate impact model; a quasi-linear complementarity formulation of dry friction that is isotropic and solvable for any nonnegative value of friction coefficients; an analysis of a splitting scheme to solve frictional contact complementarity problems; a stable, quaternion-based rigid body stepping scheme and a stable linear approximation thereof. SPOOK includes all these elements. It is linearly implicit and linearly stable, it requires the solution of either one linear system of equations of one mixed linear complementarity problem per regular time step, and two of the same when an impact condition is detected. The changes in energy caused by constraints, impacts, and dry friction, are all shown to be strictly dissipative in comparison with the free system. Since all regularization and stabilization parameters are introduced in the physics, they map directly onto physical properties and thus allow modeling of a variety of phenomena, such as constraint compliance, for instance. Tutorial material is included for continuous and discrete-time analytic mechanics, quaternion algebra, complementarity problems, rigid body dynamics, constraint kinematics, and special topics in numerical linear algebra needed in the solution of the stepping equations of SPOOK. The qualitative and quantitative aspects of SPOOK are demonstrated by comparison with a variety of standard techniques on well known test cases which are analyzed in details. SPOOK compares favorably for all these examples. In particular, it handles ill-posed and degenerate problems seamlessly and systematically. An implementation suitable for large scale performance and accuracy testing is left for future work.
213

Die Generierung von Fahrwegstörungen für vorgegebene Spektraldichten mit Hilfe orthogonaler Funktionen / La génération d'irrégularités de la voie pour des densités spectrales données à l'aide des fonctions orthogonales / Generation of track irregularities for given spectral densities using orthogonal functions

Quarz, Volker 03 October 2004 (has links) (PDF)
Fahrbahnunebenheiten und Gleislagestörungen können als Repräsentanten schwach stationärer Prozesse aufgefasst werden. Die Beschreibung der Qualitätsklassen von Fahrwegen erfolgt konventionell über die Spektraldichte (Leistungsdichte). Ausgehend von der Spektraldichte-Beschreibung wird die Generierung synthetischer Fahrwegstörungen für die numerische Simulation von Fahrzeugen als Mehrkörpersystem mit den Mitteln der Fourieranalyse und mit Hilfe von Wavelets untersucht. / Road unevenness and track irregularities can be considered as realisations of weakly stationary stochastic processes. A description of track quality levels is given by the (power)spectral density of the related process. Here, the synthesis of track irregularities for a given spectral density using fourier series and wavelets is considered.
214

Dinâmica longitudinal : efeitos da geometria de suspensão nas mudanças de atitude da massa suspensa e os esforços nos elementos da suspensão / Longitudinal dynamics : effects of the geometry suspension on the sprung mass attitude and the effort on elements suspensions

Marco Antonio Zanussi Barreto 27 June 2005 (has links)
Este trabalho tem como objetivo estudar a influência da geometria de suspensão do veículo nas atitudes da massa suspensa. Apresenta um confronto entre obras e autores e está segmentada em três partes; onde na primeira parte são definidos os conceitos básicos como dive, squat, lift, anti-dive, anti-squat, anti-lift e equivalente trailing-arm; na segunda parte são apresentadas as limitações e os novos conceitos definidos por R. S. Sharp e na terceira parte é apresentado o modelo dinâmico bidimensional introduzido por Fu-Cheng Wang. Apresenta um modelo virtual em sistema de multi-corpos desenvolvido no programa ADAMS, com todos os subsistemas que compõe um veículo completo. Inova ao trazer como objeto de estudo um veículo de competição (fórmula SAE) que possui como particularidade o sistema de suspensão push-rod. Surpreende com os resultados obtidos, pois, contrariam os conceitos básicos encontrados na maioria dos livros / This work has objective study the influence of suspension geometry on the sprung mass attitudes. It presents a confrontation among works and authors and this segmented in three parts; where in the first part the basic concepts are defined, dive, squat, lift, anti-dive, anti-squat, anti-lift and equivalent trailing-arm; in the second part the limitations are presented and the new concepts are defined for R. S. Sharp and in the third part are presented the bidimensional dynamic model introduced by Fu-Cheng Wang. It presents a virtual model in system of multi-bodies developed in the program ADAMS, with all the subsystems that composes a complete vehicle. It innovates when bringing such object to study one vehicle of competition (formula SAE) that it has a particularity suspension system push-rod. It surprises with results because it’s opposite of the basic concepts which is present in the majority of books
215

Modélisation et commande de systèmes d'entraînement de bandes flexibles : nouvelles approches à l'aide des éléments finis / Modeling and control of roll-to-roll systems : new approaches using finite elements

Martz, Yannick 20 June 2017 (has links)
Les systèmes d'entraînement de bandes flexibles sont utilisés dans la production d'une très grande variété de produits du quotidien mais également dans la métallurgie et dorénavant pour la production des nouvelles technologies. L'amélioration des systèmes industriels d'entraînement de bandes est un problème difficile car ils sont de grande dimension, non-linéaires, à paramètres variant et incertains. Ils possèdent un fort couplage entre les différentes parties (mécanique et commande) à cause de la bande qui relie les éléments. Il faut donc améliorer la chaîne de production par une approche pluridisciplinaire. Les objectifs sont de maîtriser les paramètres clés de ces systèmes afin de garantir les cadences de production et les précisions demandées de plus en plus importantes. Il faut également réduire les défauts les plus récurrents, notamment les plis de bande. Or jusqu'à présent seuls des modèles 1D étaient utilisés. Ils sont indispensables pour la synthèse de commande et les études fréquentielles mais ne permettent pas d'étudier des phénomènes complexes tels que les plis de bande. Une nouvelle approche d'étude de ces systèmes est développée. Dans un premier temps, des améliorations de structures de commandes sont proposées. Dans un second temps un modèle 3D par éléments finis utilisant un algorithme de dynamique multicorps flexibles est développé et utilisé pour étudier les plis de bande par comparaison à la théorie classique de prédiction de ces défauts. Dans un troisième temps un simulateur complet est développé comprenant le modèle 3D mécanique par élément finis couplé à la partie commande (co-simulation). / Roll-to-Roll systems are used in the manufacturing of a wide variety of everyday products as well as in metallurgy and for the manufacturing of new technologies. The improvement of Roll-to-Roll systems is a difficult problem because they are large, non-linear, with varying and uncertain parameters. They have a coupling between the different parts (mechanical and control) with the help of the web connecting the elements. It is therefore necessary to improve the process line through a multidisciplinary approach. The objectives are to master the key parameters of these systems in order to guarantee the manufacturing rates and the more important accuracies requested. It is also necessary to reduce or remove the most recurring defects such as web wrinkles. Until now, only 1D models were used. They are essential for control synthesis and frequency studies but they do not allow to study complex phenomena such as web wrinkles. A new approach for studying these systems is developed. First, improvements of control structures are proposed. Secondly, a 3D finite element model using a flexible multibody dynamics algorithm is developed, used in this work to study web wrinkles and compared to the classical prediction theory of these defects. Finally, a complete simulator is developed including the mechanical 3D model by finite element coupled to the control part (co-simulation).
216

Die Generierung von Fahrwegstörungen für vorgegebene Spektraldichten mit Hilfe orthogonaler Funktionen

Quarz, Volker 04 October 2004 (has links)
Fahrbahnunebenheiten und Gleislagestörungen können als Repräsentanten schwach stationärer Prozesse aufgefasst werden. Die Beschreibung der Qualitätsklassen von Fahrwegen erfolgt konventionell über die Spektraldichte (Leistungsdichte). Ausgehend von der Spektraldichte-Beschreibung wird die Generierung synthetischer Fahrwegstörungen für die numerische Simulation von Fahrzeugen als Mehrkörpersystem mit den Mitteln der Fourieranalyse und mit Hilfe von Wavelets untersucht. / Road unevenness and track irregularities can be considered as realisations of weakly stationary stochastic processes. A description of track quality levels is given by the (power)spectral density of the related process. Here, the synthesis of track irregularities for a given spectral density using fourier series and wavelets is considered.
217

Numerical Methods for Modeling Dynamic Features Related to Solid Body Motion, Cavitation, and Fluid Inertia in Hydraulic Machines

Zubin U Mistry (17125369) 12 March 2024 (has links)
<p dir="ltr">Positive displacement machines are used in various industries spanning the power spectrum, from industrial robotics to heavy construction equipment to aviation. These machines should be highly efficient, compact, and reliable. It is very advantageous for designers to use virtual simulations to design and improve the performance of these units as they significantly reduce cost and downtime. The recent trends of electrification and the goal to increase power density force these units to work at higher pressures and higher rotational speeds while maintaining their efficiencies and reliability. This push means that the simulation models need to advance to account for various aspects during the operation of these machines. </p><p dir="ltr">These machines typically have several bodies in relative motion with each other. Quantifying these motions and solving for their effect on the fluid enclosed are vital as they influence the machine's performance. The push towards higher rotational speeds introduces unwanted cavitation and aeration in these units. To model these effects, keeping the design evaluation time low is key for a designer. The lumped parameter approach offers the benefit of computational speed, but a major drawback that comes along with it is that it typically assumes fluid inertia to be negligible. These effects cannot be ignored, as quantifying and making design considerations to negate these effects can be beneficial. Therefore, this thesis addresses these key challenges of cavitation dynamics, body dynamics, and accounting for fluid inertia effects using a lumped parameter formulation.</p><p dir="ltr">To account for dynamics features related to cavitation, this thesis proposes a novel approach combining the two types of cavitation, i.e., gaseous and vaporous, by considering that both vapor and undissolved gas co-occupy a spherical bubble. The size of the spherical bubble is solved using the Rayleigh-Plesset equation, and the transfer of gas through the bubble interface is solved using Henry's Law and diffusion of the dissolved gas in the liquid. These equations are coupled with a novel pressure derivative equation. To account for body dynamics, this thesis introduces a novel approach for solving the positions of the bodies of a hydraulic machine while introducing new methods to solve contact dynamics and the application of Elasto Hydrodynamic Lubrication (EHL) friction at those contact locations. This thesis also proposes strategies to account for fluid inertia effects in a lumped parameter-based approach, taking as a reference an External Gear Machine. This thesis proposes a method to study the effects of fluid inertia on the pressurization and depressurization of the tooth space volumes of these units. The approach is based on considering the fluid inertia in the pressurization grooves and inside the control volumes with a peculiar sub-division. Further, frequency-dependent friction is also modeled to provide realistic damping of the fluid inside these channels.</p><p dir="ltr">To show the validity of the proposed dynamic cavitation model, the instantaneous pressure of a closed fluid volume undergoing expansion/compression is compared with multiple experimental sources, showing an improvement in accuracy compared to existing models. This modeling is then further applied to a gerotor machine and validated with experiments. Integrating this modeling technique with current displacement chamber simulation can further improve the understanding of cavitation in hydraulic systems. Formulations for body dynamics are tested on a prototype Gerotor and Vane unit. For both gerotor and vane units, comparisons of simulation results to experimental results for various dynamic quantities, such as pressure ripple, volumetric, and hydromechanical efficiency for multiple operating conditions, have been done. Extensive validation is performed for the case of gerotors where shaft torque ripple and the motion of the outer gear is experimentally validated. The thesis also comments on the distribution of the different torque loss contributions. The model for fluid inertia effects has been validated by comparing the lumped parameter model with a full three-dimensional Navier Stokes solver. The quantities compared, such as tooth space volume pressures and outlet volumetric flow rate, show a good match between the two approaches for varying operating speeds. A comparison with the experiments supports the modeling approach as well. The thesis also discusses which operating conditions and geometries play a significant role that governs the necessity to model such fluid inertia effects in the first place.</p>

Page generated in 0.0255 seconds