Spelling suggestions: "subject:"multiconstituant"" "subject:"multiconstituants""
1 |
Modélisation multiparamètre du phénomène d'adsorption : détermination du temps de percée des cartouches de masques à gaz / Modeling dynamic adsorption on coaled fixed-bed to get breakthrough times of respirator cartridgesChauveau, Romain 24 November 2014 (has links)
La protection des salariés travaillant dans une atmosphère chargée en composés organiques volatils (COV) peut être assurée par l’utilisation d’une cartouche filtrante en charbon actif. Doté d’une structure microporeuse, le charbon actif possède une très haute surface spécifique favorable à la rétention de constituants toxiques par des phénomènes d’adsorption. Prévoir le temps de fonctionnement d’un appareil de protection respiratoire constitue un des objectifs de l’Institut National de Recherche et de Sécurité. Mondialement utilisé par les organismes préventeurs, le modèle dynamique de Wheeler Jonas muni d’un modèle d’équilibre adéquat fournit des temps de claquage de cartouches exposées à un débit constant d’air sec pollué par un COV. Même si ce modèle a subi des améliorations ces dernières années, il ne permet pas de décrire correctement le comportement des cartouches en présence de copolluant ou d’humidité. Dans le présent travail, un modèle numérique permet la description de l’adsorption dynamique des COV seuls et en mélange sur un lit fixe de charbon actif. L’adsorption dynamique de l’eau a également été étudiée et modélisée. Cette étude particulière nous a permis de comprendre l’influence de l’eau sur la performance de la cartouche respiratoire. De nombreux fronts de percée ont été réalisés afin d’acquérir des informations indispensables à la description de l’équilibre d’adsorption et du transfert de matière en milieu poreux. Ces expériences ont permis d’implémenter des données pour la modélisation de l’adsorption dynamique multiconstituante. Cette dernière inclut l’adsorption binaire COV-COV et l’adsorption d’un COV en présence d’eau. Le travail effectué a permis de proposer des solutions adaptées à la complexité du sujet / Activated carbon is the sorbent used in respirator cartridges to purify breathing air by adsorbing organic vapors. Owing to an important microporous structure, the activated charcoal features a high specific area efficient to capture toxic compounds by adsorption. Predicting service life time of respirator cartridges to protect users working in a polluted atmosphere is a mission of the Institut National de Recherche et de Sécurité. The Wheeler-Jonas approach, provided with a suitable equilibrium model, is a worldwide used equation to get service life times of respirator cartridges exposed to a constant flow of dry air polluted by a single volatile organic compound (VOC). While this model has been improved in recent years, it does not adequately describe the behavior of the cartridges in the presence of moisture or copolluant. The present study aims to build a numerical model to describe dynamic adsorption of single volatile organic compounds and mixtures with or without relative humidity in the air. Single water vapor adsorption has been modeled on a coaled fixed-bed, it provides a useful description of water adsorption on activated carbon and the impact of water on the service life time of a respirator cartridge. Numerous experiments have been realized to get equilibrium data of single VOCs and mass transfer constants to describe diffusion of adsorbates through micropores. Indeed, these data have been implemented in the model to describe adsorption of mixtures. Additional experiments have been realized to study coadsorption of organic vapors and dynamic adsorption of a single VOC in presence of humidity. The results are compared with simulations to appreciate the pertinence of the model. The present work provides solutions tailored to the complexity of the subject
|
2 |
Modélisation des écoulements dans les garnissages structurés : de l'échelle du pore à l'échelle de la colonne / Modeling of flow in structured packing : from pore scale to column scaleSoulaine, Cyprien 23 October 2012 (has links)
Une colonne de séparation d'air réalise un écoulement liquide-gaz à contre courant dans une structure complexe, le garnissage. Au sein de ce garnissage, l'écoulement du liquide est du type film drainé par gravité, alors que l'écoulement du gaz est turbulent. La fonction de ces contacteurs est de développer une surface d'échange interfaciale aussi grande que possible pour favoriser le transfert d'un composé chimique de la phase liquide vers la phase vapeur (et inversement) tout en offrant des pertes de charge raisonnables. Ces dispositifs sont constitués par l'assemblage de plaques métalliques ondulées, avec ou sans perforations, où deux plaques adjacentes sont respectivement inclinées d'un angle et son opposé par rapport à l'axe de la colonne. Ce type de contacteur peut être considéré comme un milieu poreux bi-structuré avec un taux de porosité élevé. Les écoulements peuvent être décrits à deux échelles : une échelle du pore et une échelle macroscopique. A cause de cette double structuration, la modélisation macroscopique des écoulements dans ce type de structure reste un problème difficile. En particulier, les mécanismes macroscopiques qui entraînent l'étalement d'un jet dans les garnissages sont incompris. Par ailleurs, une difficulté de modélisation supplémentaire est due aux effets liés à la turbulence. Au cours de cette thèse, nous avons développé, à partir d'une méthode de changement d'échelle, un modèle complet pour simuler les écoulements et le transfert de matière dans les colonnes équipées de garnissages structurés. Notre étude se focalise sur les trois points suivants. Premièrement, nous avons obtenu, à l'aide d'une prise de moyenne volumique, une loi de Darcy-Forchheimer qui inclue les effets de la turbulence. Ensuite, pour modéliser la dispersion radiale du liquide dans la colonne, nous avons trouvé pratique de séparer la phase liquide en deux films distincts, qui s'écoulent sur chaque plaque ondulée selon des directions préférentielles différentes. Ces phases fictives ne sont pas indépendantes puisque de la matière peut passer de l'une à l'autre au niveau des points de contact entre les feuilles ondulées. Finalement, nous avons proposé un modèle macroscopique pour simuler le transport d'espèces chimiques dans un système diphasique, multiconstituants. Tous les paramètres effectifs qui apparaissent dans ce modèle sont évalués à partir de solutions analytiques ou numériques de l'écoulement à la petite échelle. Les résultats de simulation ont été comparés avec succès à des mesures expérimentales obtenues en laboratoire ou sur pilote industriel. / Structured packings play a large role in chemical engineering processes involving gasliquid separation such as air distillation unit or CO2 absorption columns. Such structures maximize the exchange surface between gas and liquid while pressure drops remain low enough. Generally, the columns are operated in the counter-current flow mode : a liquid gravity film is sheared by the turbulent flow of a gas phase. The packings are made of an assembly of corrugated sheets where two adjacent sheets are respectively inclined by an angle and the opposite of this angle from the vertical axis. We can apprehend such a device as a bi-structured porous medium with high porosity defining two scales of description : a pore-scale and a macro-scale assimilated to the packing scale. Due to this peculiar structured geometry, the flow modeling from a macroscopic point of view, remains a challenging problem that has to be overcome to design enhanced devices. In particular, the macroscopic phenomena that leads to the spreading of a liquid point source at the top of a packing are still unknown, and the classical two-phase flow models in porous media failed to properly catch the liquid distribution within the column. Moreover, turbulence effects lead to additional difficulties. We developed a comprehensive mathematical model based on a multi-scale analysis to simulate gas-liquid flow through the distillation columns. We investigate three main points. First, we derived a Darcy-Forchheimer law that includes turbulence effects using the method of volume averaging. Then, to model the liquid spreading, we found convenient to split the liquid phase into two fictitious phases flowing along each sheet with a preferential direction. Moreover, these phases are not (except perhaps at very low saturation) completely independent since adjacent sheets are in contact and the liquid can flow from one sheet to the other. Finally, we proposed a macro-scale dispersion model to simulate two-phase, multicomponent transport in structured packing. All the effective properties that appear in this model are evaluated from either simulations or analytical solutions of the flow at the pore-scale. Simulation results have been successfully compared to laboratory-scale experiments and industrial-scale measurements.
|
3 |
Schémas numériques instationnaires pour des écoulements multiphasiques multiconstituants dans des bassins sédimentairesNadau, Lionel 22 September 2003 (has links) (PDF)
Un bassin sédimentaire est un milieu poreux de grande dimension (plusieurs dizaines de kilomètres de long et de large pour une profondeur d'environ cinq kilomètres) qui évolue au cours du temps par les effets de compaction et de sédimentation. Au cours de cette évolution, des hydrocarbures vont se former et s'écouler dans le bassin. On établit alors un modèle permettant de simuler cette évolution de bassin ainsi que la création, la migration et le piégeage des hydrocarbures dans des roches appelées roches magasins. Ces phénomènes se déroulant sur des centaines de millions d'années, on s'est attaché à étudier principalement une discrétisation temporelle de ces équations. On a ainsi mis en avant un raffinement local du pas de temps dont le principe est de recalculer la solution sur une zone jugée "mauvaise". A l'extérieure de cette zone, la solution est admissible. La difficulté vient de la détermination de la zone qui doit - être suffisamment "grande" pour avoir une bonne qualité de la solution, mais suffisamment "petite" pour obtenir un gain calcul. Les estimateurs a posteriori permettent de contourner cette difficulté. On a donc entrepris une étude théorique de ces estimateurs a posteriori dans le cas des équations linéaires elliptique et parabolique. Des simulations numériques montrent l'efficacité de ces estimateurs dans des cas académiques.
|
4 |
Modélisation de l'absorption réactive multiconstituant : application au traitement des gaz acides par des solvants aux alcanolamines / Modelling of multicomponent reactive absorption : application to the acid gases treatment by alkanolamine solventsAhmadi, Aras 30 September 2011 (has links)
Les gaz issus de la combustion des énergies fossiles dans les centrales électriques contiennent une grande variété de polluants tels que les gaz-acides et ne peuvent être rejetés directement dans l'atmosphère. Ces polluants gazeux doivent être traités par des méthodes de captage en post combustion dans des colonnes d'absorption utilisant des solvants chimiques. L'objectif est donc de concevoir une unité d'élimination sélective des gaz-acides tels que CO2, H2S et COS en utilisant des solvants de la famille des alcanolamines. Cette thèse développe dans un premier temps, un modèle de non-équilibre, adapté aux systèmes multiconstituants électrolytiques et réactifs, pour la représentation des colonnes d'absorption réactive. Le modèle comporte des modules pour représenter la thermodynamique en espèces vraies (espèces ioniques et moléculaires), le transfert simultané de masse et de chaleur, et les réactions chimiques. Les équations généralisées de Maxwell-Stefan sont utilisées pour quantifier les interactions multiconstituants lors de la diffusion. Le schéma réactionnel est intégralement pris en compte dans la phase liquide, et les réactions chimiques peuvent être cinétiquement contrôlées ou à l'équilibre chimique instantané. La séparation réactive en régime permanent est ainsi simulée avec une description rigoureuse des phénomènes de réaction-diffusion dans les films diffusionnels. Dans un deuxième temps, une installation pilote de captage du CO2 par une solution aqueuse de diéthanolamine est mise en fluvre pour la validation expérimentale du modèle. La diéthanolamine a une forte réactivité vis-à-vis du CO2; ceci engendre un profil important de concentration du soluté dans la colonne. Le pilote est dédié à la validation de modèle, il est donc équipé de plusieurs unités d'échantillonnage gaz et liquide à différentes hauteurs de garnissage. Les profils longitudinaux de la concentration du CO2 en gaz et en liquide, de l'humidité absolue et de la température liquide peuvent être établis expérimentalement et être comparés avec ceux provenant de la simulation. L'outil de simulation validé devient alors un outil de prédiction de l'efficacité des unités réelles de captage par l'absorption réactive. / The exhaust gases coming from the combustion of fossil fuels in power plants contain a wide variety of pollutants such as acid gases and can not be discharged directly into the atmosphere. These gaseous pollutants must be treated by postcombustion capture methods in absorption columns using chemical solvents. The objective is then to design a selective removal unit of acid-gases such as CO2, H2S and COS by using solvents of the alkanolamine family. This thesis develops as the first step, a non-equilibrium model, adapted to multicomponent electrolytic and reactive systems, for the representation of reactive absorption columns. The model includes modules to represent the thermodynamics on the basis of true species (ionic and molecular species), the simultaneous heat and mass transfer, and the chemical reactions. The generalized equations of Maxwell-Stefan are used to take into account the multicomponent interactions during diffusion. The reaction scheme is fully included in the liquid phase, and the chemical reactions can be kinetically controlled or at instantaneous equilibrium. The reactive separation at steady-state conditions is then simulated with a rigorous description of the reaction-diffusion phenomena in diffusional films. In the second step, a pilot plant of CO2 capture with an aqueous solution of diethanolamine is implemented for experimental validation of the model. Diethanolamine has high reactivity with respect to CO2; this generates an important concentration profile of solute in the column. The pilot plant is dedicated to model validation; it is equipped with several gas and liquid sampling units at different heights of packing. The longitudinal profiles of the gas and liquid CO2 concentration, the absolute humidity and the liquid temperature can be established experimentally and compared with those from the simulation. The validated simulation tool then becomes a tool to predict the effectiveness of real capture units by reactive absorption.
|
Page generated in 0.0687 seconds