• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 67
  • 26
  • 12
  • 10
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • Tagged with
  • 371
  • 235
  • 122
  • 82
  • 70
  • 59
  • 39
  • 38
  • 32
  • 32
  • 30
  • 26
  • 23
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Characterization and Inhibition of the Dimer Interface in Bacterial Small Multidrug Resistance Proteins

Poulsen, Bradley E. 19 December 2012 (has links)
As one of the mechanisms of antibiotic resistance, bacteria use several families of membrane-embedded α-helical transporters to remove cytotoxic molecules from the cell. The small multidrug resistance protein family (SMR) is one such group of drug transporters that because of their relative small size [ca. 110 residues with four transmembrane (TM) helices] must form at the minimum dimers to efflux drugs. We have used the SMR homologue Hsmr from Halobacterium salinarum to investigate the oligomerization properties of the protein family at TM helix 4. We produced point mutations along the length of the TM4 helix in the full length Hsmr protein and assayed their dimerization and functional properties via SDS-PAGE and bacterial cell growth assays. We found that Hsmr forms functionally dependent dimers via an evolutionarily conserved 90GLxLIxxGV98 small residue heptad repeat. Upon investigation of the large hydrophobic residues in this motif by substituting each large residue to Ile, Leu, Met, Phe, and Val, we determined that Hsmr efflux function relies on an optimal level of dimerization. While some substitutions led to either decreased or increased dimer and substrate-binding strength, several Ile94 and Val98 mutants were equal to wild type dimerization levels but were nonfunctional, leading to the hypothesis of a mechanistic role at TM4 in addition to the locus of dimerization. The functionally sensitive TM4 dimer represents a potential target for SMR inhibition using a synthetic TM4 peptide mimetic. Using exponential decay measurements from a real-time cellular efflux assay, we observed the efflux decay constant was decreased by up to ~60% after treatment with the TM4 peptide inhibitor compared to control peptide treatments. Our results suggest that this approach could conceivably be used to design hydrophobic peptides for disruption of key TM-TM interactions of membrane proteins, and represent a valuable route to the discovery of new therapeutics.
112

A novel approach to circumvent P-glycoporotein mediated cellular efflux and permeability enhancement of HIV protease inhibitor saquinavir

Jain, Ritesh, Mitra, Ashim K., January 2007 (has links)
Thesis (Ph. D.)--School of Pharmacy. University of Missouri--Kansas City, 2007. / "A dissertation in pharmaceutical science and pharmacology." Advisor: Ashim K. Mitra. Typescript. Vita. Title from "catalog record" of the print edition Description based on contents viewed July 16, 2008. Includes bibliographical references (leaves 231-248). Online version of the print edition.
113

Exploration of experiences of patients with the adverse-drug effects of multidrug-resistant tuberculosis treatment in a primary health care facility in the Western Cape

Tinzi, Siphokuhle January 2017 (has links)
Magister Curationis - MCur / Multidrug resistant TB (MDR-TB) is a form of TB caused by bacteria (germs) that are resistant to the usual drugs that are used to treat "normal" TB. The duration of treatment for MDR-TB is a maximum of 22 months. People with MDR-TB are treated in specialized tertiary hospitals and in out-patient clinics in the PHC facilities. The treatment includes a six months injectable phase with a wide range of TB drugs. The adverse effects of MDR-TB drugs are among the worst side effects ever reported by patients. The aim of the current study was to explore the experiences of adverse effects of MDR-TB treatment amongst patients in a primary health care facility in the Western Cape. An explorative qualitative study design was used to explore the experiences of patient with the adverse effects of MDR-TB treatment in a primary health care facility in the Western Cape. In depth interviews were conducted with 12 MDR-TB patients. Data analysis was done by using the Tesch's method of content analysis. The study revealed that participating MDR-TB patients experienced various emotional, financial, physical and social challenges. Participants explained that the experience of being on MDR-TB treatment is emotionally draining; the pain and discomfort of the adverse effect of treatment makes a person to feel anxious and depressed. Financially they depended on social grants because they had to stop working after starting treatment. They could not function well physically because of the toxic nature of the adverse effects of treatment; which resulted in fatigue, dizziness and burning sensation on the feet and hands. They were faced with a lot of stigma from the community and even family members because of their illness. The study also revealed that in spite of the challenges and obstacles the participants were all motivated to complete their treatment and get cured. It is recommended that more support structures be made available for patients who are being treated for MDRT-TB such as; psychotherapy, social support and counselling on health education. Provision needs to be made for patients who are receiving daily injection; for it to be given in their homes. Health care providers treating MDR-TB patients need to do home visits together with MDR-TB adherence counsellors, to monitor the physical wellbeing of patients at home. This will also provide patients with the platform to discuss their health concerns in a more accommodative and relaxed environment. New drug regimen with fewer tablets and less treatment duration is needed for MDR-TB.
114

CONTRIBUTIONS OF TM5, ECL3 AND TM6 OF HUMAN BCRP TO ITS OLIGOMERIZATION ACTIVITIES AND TRANSPORT FUNCTIONS

Mo, Wei 16 March 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Human BCRP is one of the major ATP-binding cassette transporters involved in the development of multidrug resistance in cancer chemotherapy. Overexpression of BCRP in the tumor cell plasma membrane and apical membrane of the gastrointestinal tract leads to decreased intracellular accumulation of various anticancer drugs as well as reduced drug bioavailability. BCRP has been shown to exist on the plasma membrane as higher forms of homo-oligomers. In addition, the oligomerization domain of BCRP has been mapped to the carboxyl-terminal TM5-ECL3-TM6 and this truncated domain, when co-expressed with the full-length BCRP, displays a dominant inhibitory activity on BCRP function. Thus, the oligomerization of BCRP could be a promising target in reversing multidrug resistance mediated by BCRP. To further dissect the oligomerization domains of human BCRP and test the hypothesis that TM5, ECL3, and TM6 each plays a role in BCRP oligomerization and function, we engineered a series of BCRP domain-swapping constructs with alterations at TM5-ECL3-TM6 and further generated HEK293 cells stably expressing wild-type or each domain-swapping construct of BCRP. Using co-immunoprecipitation and chemical cross-linking, we found that TM5, ECL3, and TM6 all appear to partially contribute to BCRP oligomerization, which are responsible for the formation of oligomeric BCRP. However, only TM5 appears to be a major contributor to the transport activity and drug resistance mediated by BCRP, while ECL3 or TM6 is insufficient for BCRP functions. Taken together, these findings suggest that homo-oligomeric human BCRP may be formed by the interactions among TM5, ECL3 and TM6, and TM5 is a crucial domain for BCRP functions and BCRP-mediated drug resistance. These findings may further be used to explore targets for therapeutic development to reverse BCRP-mediated drug resistance and increase the bioavailability of anti-cancer drugs for better treatment of multidrug resistant cancers.
115

The practice of nurses in the prevention of multidrug-resistant tuberculosis at King Cetshwayo district

Mahaye, Theodora Thandile January 2017 (has links)
Submitted in fulfilment of the requirements for the Master of Health Sciences in Nursing, Durban University of Technology, 2017. / Tuberculosis (TB) is South Africa’s greatest community health problem. Nurses have a critical role in supporting patients in the TB treatment process. An estimated 480 000 new cases of Multidrug-Resistant Tuberculosis (MDR-TB) and 190 000 people died in 2014. An estimated 43 million lives were saved between 2000 and 2014 with effective diagnosis and treatment of TB. Despite these measures TB remains one of the world’s biggest threats. In an attempt to improve the practice of nurses in the prevention of MDR-TB, the knowledge of nurses with regards to the prevention of MDR-TB is essential. Aim of the Study The aim of the study was to describe the practice of the nurses in the prevention of MDR-TB and to determine whether the practice was effective in the prevention of MDR-TB. Methodology Quantitative, descriptive survey was used to conduct the study. Purposive sampling method was employed to select six primary health care clinics at uThungulu District. The target population consisted of professional nurses and enrolled nurses working in these clinics. The sample size was 122. The questionnaire was used to collect data. Descriptive statistics was used to describe the data graphically. In order to test for significant trends in the data, inferential statistics were applied. Results The findings of the study revealed that nurses were implementing measures of preventing MDR-TB like tracing of patients who interrupted TB treatment although there were inconsistencies with implementation of other measures. There were gaps related to attendance of TB courses by TB staff. Nurses were working in an overcrowded environment where it was difficult to implement measures for preventing MDR-TB. There was an increase in the workload due to the high number of patients having TB. Conclusion In this study, the majority of nurses working in primary health care clinics scored well in infection control measures with regard to practicing cough hygiene, placing patients in a well-ventilated area, collection of sputum from patients suspected of having TB and giving of health education to patients with TB and relatives but there areas that need improvement. The findings indicate knowledge gap with regard to TB. There is a need for attendance of short courses in TB, increase of staff attending to TB patients so as to cope with the workload and efficient allocation of resources. / M
116

Etude des mécanismes moléculaires de résistance différentielle du mélanome malin aux vincalcaloïdes / Study of the molecular mechanisms of malignant melanoma differential resistance to vinca alkaloids

Attaoua, Chaker 19 June 2013 (has links)
Le mélanome malin (MM) est un cancer très réfractaire aux thérapies anticancéreuses, dont les vincalcaloïdes (VAs). Afin d'étudier le rôle de la GSTM1 (glutathion S-transférase 1) et la MRP1 (multidrug resistance protein 1) dans la résistance acquise du MM aux VAs, nous avons établi 4 modèles cellulaires de résistance à la vincristine (CAL1R-VCR), à la vindésine (CAL1R-VDS), à la vinorelbine (CAL1R-VRB) et à la vinflunine (CAL1R-VFL), par exposition continue de cellules du MM (CAL1-wt), pendant un an, à ces anticancéreux. L'expression d'ne GSTM1 fonctionnelle est spécifiquement observée (RT-PCR, western blot, activité GST totale) dans les cellules résistantes. Le curcumin (inhibiteur de GSTM1), la BSO (inhibiteur de synthèse de glutathion) et le MK571 (inhibiteur de MRP1), réduisent considérablement le résistance acquise à la VCR et à la VDS mais pas à la VRB ou à la VFL. Toutefois, tous ces VAs réduisent spécifiquement l'activité GSTM1. Ces données montrent l'implication différentielle de GSTM1 et MRP1 dans la résistance aux VAs. Pour déterminer les mécanismes moléculaires de cette chimiorésistance, nous avons réalisé une étude pangénomique (biopuces Affymetrix HG-U133 Plus 2.00) sur les lignées CAL1 (wt et R). Le regroupement hiérarchique (par Cluster et TreeView) des données des puces a révélé une similarité entre les profils d'expression génique de CAL1R-VRB et CAL1-wt mais aussi entre ceux de CAL1R-VCR et CAL1R-VDS. L'analyse bioinformatique (par IPA) des transcrits les plus différemment exprimés entre les lignées cellulaires, a mis en évidence 6 réseaux géniques connus pour leur rôle dans la chimiorésistance tumorale. Le programme FatiGO a révélé 3 termes biologiques sur-représentés (> 60%) dans CAL1R (ribosome, filaments intermédiaires du cytosquelette, récepteurs olfactifs) tandis que l'étude fonctionnelle (invalidation génique par siRNA, test de viabilité) de GPR143, KIT et SLC45A2 (gènes interagissant avec NF-κB et CCND1 (facteurs de la chimiorésistance tumorale), très exprimés dans CAL1-wt et muets dans CAL1R) a montré la faible tendance des deux premiers à être impliqués dans la résistance aux VAs. / Malignant melanoma (MM) is a very refractory tumor to anticancer therapies, including vinca alkaloïds (VAs). To investigate the role of GSTM1 (glutathione S-transferase μ1) and MRP1 (multidrug resistance protein 1) in MM acquired resistance to VAs, we established 4 cellular models of resistance to vincristine (CAL1R-VCR), to vindesine (CAL1R-VDS), to vinorelbine (CAL1R-VRB) and to vinflunine (CAL1R-VFL), by continuous exposure of MM cells (CAL1-wt), for one year, to these anticancer agents. The expression of a functional GSTM1 is specifically observed (RT-PCR, western blot, total GST activity) in resistant cells. Curcumin (GSTM1 inhibitor), BSO (glutathione synthesis inhibitor) and MK571 (MRP1 inhibitor), considerably reduce the acquired resistance to VCR and VDS but not that to VRB or VFL. However, all these VAs specifically reduce GSTM1 activity. These data show the differential involvement of GSTM1 and MRP1 in resistance to VAs. To determine the molecular mechanisms of this chemoresistance, we performed a pangenomic study (Affymetrix HG-U133 Plus 2.00 microarrays) on the CAL1 lines (wt and R). The hierarchical clustering (by Cluster and TreeView) of array data revealed a similarity between the gene expression profiles of CAL1R-VRB and CAL1-wt, but also between those of CAL1R-VCR and CAL1R-VDS. The bioinformatic analysis (by IPA) of the most differentially expressed transcripts between cell lines, highlighted 6 gene networks known for their role in tumor chemoresistance. FatiGO program revealed 3 biological terms overrepresented (>60%) in CAL1R (ribosome, intermediate filaments of cytoskeleton, olfactory receptors), while functional study (gene invalidation by siRNA, viability test) of GPR143, KIT and SLC45A2 (genes interacting with NF-kB and CCND1 (tumor chemoresistance factors), highly expressed in CAL1-wt and mute in CAL1R) showed the weak trend of the two formers to be involved in resistance to VAs.
117

In vitro- und in vivo Untersuchungen für eine nicht-virale und Therapie-regulierbare Tumorgentherapie

Walther, Wolfgang 28 April 2004 (has links)
Die Gentherapie hat in den letzten Jahren wesentliche Entwicklungen im Vektordesign, der kontrollierte Expression sowie der Sicherheit ihrer Anwendung durchgemacht. Die Erkenntnis, dass die Tumorgentherapie allein nur in begrenztem Maße zum erhofften therapeutischen Benefit für den Patienten beitragen kann, führte zum Konzept der lokalen Gentherapie als Teil anderer, etablierter Tumortherapien. In diesem Zusammenhang wird die Gentherapie als eine moderne Option zur Steigerung der Effizienz von Chemotherapie, Strahlentherapie oder Hyperthermie verstanden. Zum Erreichen dieses Zieles ist die Etablierung Therapie-regulierbarer Vektorsysteme von besonderer Attraktivität. Im Rahmen der Strategie des lokalen Transfers therapeutischer Gene bietet inzwischen die Anwendung nicht-viraler Transfersysteme, wie z.B. in vivo-Elektrotransfer, Gene-Gun oder Jet-Injection eine klinisch applikable Technologie. Die Etablierung einer effizienten, auf der Jet-Injection basierenden nicht-viralen Transfertechnologie und die Analyse ihres Potentials für eine klinische Anwendung in einem multimodalen Therapiekonzept war ein wesentliches Ziel der Arbeit. Es wurde gezeigt, dass die Jet-Injection in tierexperimentellen Tumormodellen zur effizienten Expression der Transgene führt, dass sowohl Eindringtiefen, als auch Verteilung der Jet-Injection optimal für einen effizienten Gentransfer sind und die Höhe der Genexpression mit etablierten Gentransfer-Technologien, wie z.B. der in vivo-Lipofektion, vergleichbar ist. Basierend auf der Strategie des Einsatzes der Gentherapie in Kombination mit anderen Therapien, bestand ein weiteres Ziel der Arbeit in der Charakterisierung und Anwendung konditioneller Vektorsysteme, mit denen die Expression therapeutischer Gene durch Chemotherapie oder Hyperthermie kontrollierbar ist. Derartige Vektoren, in denen der humane Multidrug Resistenzgen 1- (mdr1) Promotor genutzt wurde, exprimierten vor allem Zytokingene, die die therapeutische Effizienz von Zytostatika oder der Hyperthermie verbessern. Die Zytostatika-und auch Hitze-Induzierbarkeit der mdr1-Promotor gesteuerten Genexpression konnte in verschiedenen Tumormodellen in vitro und in vivo erfolgreich demonstriert werden Diese Untersuchungen zeigten, dass eine Zytostatika-induzierte Gentherapie zu einer besseren Tumortherapie beiträgt. Die Kombinations-Experimente der konditionellen Gentherapie im Kontext einer Hyperthermie geben erste Hinweise, dass auch hier die therapeutische Effektivität in vitro und in vivo gesteigert werden kann. Im Rahmen des Konzepts der kombinierten Gen- und Chemotherapie von Tumoren ist in der Arbeit vor allem auf das chemosensitivierende Potential von Zytokinen gesetzt worden. Besonders für TNF-a, IL-2 sowie IFN-g konnte gezeigt werden, dass diese Zytokine zu einer Modulation der Expression MDR-assoziierter Gene, wie dem mdr1, MVP/LRP und auch MRP1 in der Lage sind und dadurch zur Chemosensitivierung in verschiedenen Tumormodellen führt. Diese Befunde bildeten eine wichtige Rationale für den Einsatz von Zytokingenen im Rahmen der Tumorgentherapie zur Überwindung der MDR. Gentransferexperimente mit TNF-a- und IL-2-exprimierenden Vektoren konnten analog zur Applikation rekombinanter Zytokine die Modulation der Gene mdr1 und MVP/LRP zeigen, die mit der Erhöhung der Sensitivität gegenüber Zytostatika wie Vincristin oder Adriamycin assoziiert ist. / Gene therapy has made great achievements in vector design, controlled gene expression and in safety. The fact, that gene therapy as single therapy has only limited potential for the benefit in the therapy for cancer patients, has led to the concept of local gene therapy as part of other, established therapies. In this context, gene therapy serves as a modern option to improve the efficiency of chemotherapy, radiotherapy or hyperthermia. To achieve this goal, the establishment of therapy-regulatable vectors is of particular attractiveness. For the concept of local transfer of therapeutic genes non-viral transfer systems, such as in vivo electrotransfer, gene gun or jet-injection represent clinically applicable transfer technologies. One major issue of this work was the establishment of an efficient, jet-injection based non-viral transfer technology and the analysis of its potential for clinical application in a concept of multimodal therapy. It has been shown in vivo, that efficient transgene expression can be achieved by jet-injection, that penetration and distribution of the transgene are optimal for an efficient gene transfer and that the level of gene expression is comparable to established gene transfer technologies, sch as in vivo lipofection. Based on the strategy of combination of gene therapy with other therapies, another goal of this work aimed at the characterization and utilization of conditional vector systems, by which expression of therapeutic genes is controllable by chemotherapy or hyperthermia. By such vectors, in which the human multidrug resistance gene 1 (mdr1) promoter was employed, cytokine genes were expressed, which are capable to improve the therapeutic efficacy of cytostatic drugs or of hyperthermia. The drug- and heat-inducibility of mdr1 promoter-driven gene expression has successfully been demonstrated in in vitro and n vivo tumor models. The studies have also shown, that drug-induced gene therapy leads to improved tumor treatment. Combination experiments of conditional gene therapy in the context with hyperthermia give first indication of an increased therapeutic efficiency in vitro and in vivo. For the concept of combined gene- and chemotherapy the chemosensitizing potential of cytokines was exploited. It has been shown, particularly for TNF-a, IL-2 and IFN-g, that these cytokines are capable to modulate the expression of MDR-associated genes, such as mdr1, MVP/LRP or MRP1 leading to chemosensitization in different tumor models. These observations represent an important rationale for the use of cytokine genes in gene therapy for MDR-overcoming. Gene transfer experiments with TNF- or IL-2 expressing vectors showed the modulation of mdr1 or MVP/LRP expression, associated with increased sensitivity towards cytostatic drugs, such as vincristine or adriamycin.
118

On the structure and function of multidrug efflux pumps

Neuberger, Arthur January 2019 (has links)
Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this work, a summary is provided of our current understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria (Chapter 1). The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities. Although this thesis primarily explores structure and function, it also elucidates the hidden regulatory mechanism (post-translational) behind the association of a small protein called AcrZ with the tripartite complex AcrAB/TolC, in connection with the lipid environment, and the resulting changes in the latter's functionality (Chapter 2). A regulatory role of the native membrane lipid environment as well as of small proteins for efflux pump activity have previously been hypothesised. I present the first example of a function-regulating role of the lipid cardiolipin in combination with a small protein binding partner (AcrZ) for the substrate selectivity and transport activity of an efflux pump protein (AcrB). This regulation happens through induced structural changes which have remained unseen so far. Alongside with these results, a nanodisc reconstitution method was experimentally adapted for a structure-function investigation of an efflux pump (complex) using cryo-EM (Chapter 2). Beyond some fundamental regulatory insights, hidden intrinsic transport mechanisms for some transporters have also remained to be explored and studied. The discovery of a mechanism for active influx by a prominent efflux pump model system (Chapter 3) provides hope that this phenomenon is more common amongst multidrug transporters and that it could be utilised for drug discovery purposes. This novel feature explains the contradictory findings on this transporter in the past and raises new questions about the little-known physiological role and evolution of efflux pumps. The development and evolution of antimicrobial resistance has frequently shown to be a multifactorial and fast-moving process. One of these factors is the evolution of pumps itself towards an altered functionality (e.g. towards a broader or altered substrate spectrum or higher efflux rates). Against this background, the role of key carboxylate residues for efflux-energising proton trafficking was investigated for a prominent study model of a secondary-active transporter (Chapter 4). The re-allocation and/or addition of acidic residues was demonstrated to result in the preservation of wild type activity or the generation of hyper-efflux activity, respectively. These findings suggest that rapid emergence of antimicrobial resistance could be enhanced by the 'plasticity' in the location of key carboxylate residues with a role in proton coupling. It also demonstrates the necessity of antimicrobial drug design programmes to anticipate possible trajectories of an adaptive evolution of efflux pump. The 'cryo-EM revolution' has boosted the pace at which new structural and functional insights into multidrug efflux pumps are gained. Nevertheless, in order to derive the structure of individual pump components or of a full assembly, it is sometimes necessary to identify and characterise homologues and mutants, which would allow the application of cryo-EM for obtaining near-atomic maps. Functional analyses presented in this work helped to characterise a homologue and mutants of the MacAB/TolC tripartite complex to justify the obtained protein structures and strategies for further functional characterisation (Chapter 5). Given (1) the unusual stoichiometry of a MacB dimer in complex with a hexameric membrane-fusion protein (MacA), which leads to a seeming leakiness of the assembly, and (2) the fact that substrate has to pass through a narrow aperture in the membrane-fusion protein for extrusion, it is rather surprising that MacB was previously shown to transport an entire toxin. An experimental approach was developed that could enable the structure determination of a toxin-bound full assembly of MacAB/TolC (Chapter 5). Finally, the role of multidrug efflux pumps for the evolution of multidrug resistance is yet to be studied and better explored. For instance, evolutionary trajectories of pump overexpression, as compared to those of regular expression or no expression, are unknown yet could have the potential to reveal useful insights for spread prevention and drug design. The outline of an experimental design with some preliminary validating data is presented in Chapter 6.
119

Multidrug transporter MdfA as a target for high-resolution structural studies

O'Grady, Christopher Brian 28 January 2010
The MdfA is a 410 amino acid-long integral membrane protein, which belongs to the Major Facilitator superfamily of multidrug transporters. It is predicted to consist of 12 transmembrane helices. MdfA uses the energy of the transmembrane proton gradient to pump a variety of toxic compounds out of E. coli cells. No high resolution structure of MdfA is available. The goals of this research project were to develop a practical method for purification of MdfA, to evaluate the feasibility of structure determination by Nuclear Magnetic Resonance (NMR) and X-ray crystallography, and to develop an activity assay for purified MdfA. To this end, MdfA, with a hexa-histidine tag attached to facilitate protein purification, was successfully expressed and incorporated into the cell membrane using an E. coli expression system. MdfA was extracted from the cell membrane with the detergents 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC), n-dodecyl-B-D-maltoside (DDM), and 1-myristoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LMPG) and purified by affinity chromatography on nickel-nitrilotriacetic acid agarose. Pure protein was found to be monodisperse in DHPC, DDM and LMPG micelles. To achieve simple amino acid selective isotope labeling for high-resolution NMR studies, MdfA was expressed in a cell-free translation system. To determine if the purified protein was properly folded, 19F NMR experiments were carried out on 5-fluoro-tryptophan-labeled MdfA while titrating the MdfA substrates ethidium bromide and chloramphenicol into the fluoro-tryptophan-labeled MdfA sample. An activity assay was developed for MdfA incorporated into liposomes using the fluorescent dye 9-amino-6-chloro-2-methoxyacridine (ACMA) to detect proton translocation coupled to substrate transport. Results from both the 19F NMR and the transport activity assay indicated that the purified MdfA was properly folded and functional. NMR experiments with pure MdfA yielded spectra of insufficient quality for high-resolution structure determination but did indicate that structural studies of MdfA by NMR are feasible. Crystallization trials yielded crystals that are likely to contain protein and will serve as a starting point for further optimization of crystallization conditions for X-ray structure determination.
120

Multidrug transporter MdfA as a target for high-resolution structural studies

O'Grady, Christopher Brian 28 January 2010 (has links)
The MdfA is a 410 amino acid-long integral membrane protein, which belongs to the Major Facilitator superfamily of multidrug transporters. It is predicted to consist of 12 transmembrane helices. MdfA uses the energy of the transmembrane proton gradient to pump a variety of toxic compounds out of E. coli cells. No high resolution structure of MdfA is available. The goals of this research project were to develop a practical method for purification of MdfA, to evaluate the feasibility of structure determination by Nuclear Magnetic Resonance (NMR) and X-ray crystallography, and to develop an activity assay for purified MdfA. To this end, MdfA, with a hexa-histidine tag attached to facilitate protein purification, was successfully expressed and incorporated into the cell membrane using an E. coli expression system. MdfA was extracted from the cell membrane with the detergents 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC), n-dodecyl-B-D-maltoside (DDM), and 1-myristoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LMPG) and purified by affinity chromatography on nickel-nitrilotriacetic acid agarose. Pure protein was found to be monodisperse in DHPC, DDM and LMPG micelles. To achieve simple amino acid selective isotope labeling for high-resolution NMR studies, MdfA was expressed in a cell-free translation system. To determine if the purified protein was properly folded, 19F NMR experiments were carried out on 5-fluoro-tryptophan-labeled MdfA while titrating the MdfA substrates ethidium bromide and chloramphenicol into the fluoro-tryptophan-labeled MdfA sample. An activity assay was developed for MdfA incorporated into liposomes using the fluorescent dye 9-amino-6-chloro-2-methoxyacridine (ACMA) to detect proton translocation coupled to substrate transport. Results from both the 19F NMR and the transport activity assay indicated that the purified MdfA was properly folded and functional. NMR experiments with pure MdfA yielded spectra of insufficient quality for high-resolution structure determination but did indicate that structural studies of MdfA by NMR are feasible. Crystallization trials yielded crystals that are likely to contain protein and will serve as a starting point for further optimization of crystallization conditions for X-ray structure determination.

Page generated in 0.0497 seconds