• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 248
  • 77
  • 67
  • 35
  • 19
  • 14
  • 12
  • 11
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 562
  • 98
  • 71
  • 68
  • 66
  • 53
  • 53
  • 52
  • 47
  • 46
  • 46
  • 44
  • 43
  • 42
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Prozessmodellierung von Reaktiv-Multischicht-Systemen (RMS)

Rühl, Maximilian 23 May 2016 (has links) (PDF)
The focus of this work is the theoretical and experimentell descreption of so-called Reactive Multilayer Systems (RMS). The RMS consist of at least two mostly metallic materials, which can exothermic response with each other. Using magnetron sputter deposition (MSD) several hundred to thousands alternating layers are produced. The periodic thickness varies between 10-150 nm and the total thickness between 10-100 µ m . The exotermic reaction is effected by an activation energy, e.g. with an electric spark. In this case a phase transition of the RMS materials, which are in a metastable equilibrium, will take place. This released energy in the shape of heat, which actvates the reaction in the neighboring areas. It forms a self-sustaining thermal wave through the RMS foil. In this case the amount of energy is present, that a solder on the RMS or the joining samples or even the material itself can be melted. Therefore the RMS can be used as a heat source for joining two components. The major advantage of this technology is the very low heat input in the bonding components, due to the milliseconds of the reaction. Thus the components are heated only superfical and there is no structural damage. Thus a very low-stress joining is possible. Furthermore is guaranteed, because of the metallic materials, a very high electrical and thermal conductivity. For the theoretical characterization of the physical and chemical processes within the RMS FEM-Simulations of the absolut temperature and the propagation velocity are preformed. In order to calculate the tmeperature ditribution in the components a new method will presented. It is thus possible to calculate the temperature penetration of the components to determine potential thermal barrier layer-thickness and the meltig time. Thus parameters for the specific joint problem such as period thickness, etc. of the RMS are derived. Modelling the heat transport after joining with RMS it is possible to derive a corralation between the thermal conductivity and shear strength. To quantify the theoretical results and to require certain parameters for the calculations experiments were preformed. The RMS will be investigated experimentally in terms of their enthalpy H , propagation velocity v , nascent temperature, melting time t schmelz , interdiffusion zone w , phase transition and its use as inovative heat source for joining components. The experimental results are compared with the theortical and complet this work.
92

Development of an innovative diaphragm accumulator design and assembly process

Hillesheim, Thorsten 02 May 2016 (has links) (PDF)
Freudenberg Sealing Technologies has developed a new concept for the manufacture of diaphragm accumulators. Its advantages are a reduced need for components, fewer process steps, shorter assembly times, a higher level of product cleanliness, and an expansion of the product portfolio into additional fields of application. These diaphragm accumulators also weigh significantly less. This is opening up new opportunities for applications in the automotive and industrial fields. The assembly concept is based on a hermetically sealed pressure chamber in which the joining of the two housing halves with the help electromagnetic pulse technology (EMPT) as well as the filling of the gas side with nitrogen takes place in a single operation. In this way, downstream filling to generate the initial gas charge is no longer necessary.
93

Development of microfluidic packages on multilayer organic substrate for cooling and tuning RF circuits

Lemtiri Chlieh, Outmane 07 January 2016 (has links)
The objective of this PhD research was to design and implement novel microfluidic radio-frequency (RF) structures on multilayer organic substrates for cooling and tuning purposes. The different designs were implemented to target applications up to C-band (4 GHz – 8 GHz) frequencies. The system-on-package (SoP) solution adopted throughout this work is well adapted for such designs where there is a need to integrate the functionality of different sub-components into a single hybrid fully packaged system. The first part of the thesis is dedicated to the study of a specific liquid cooling scheme using integrated microchannels on organics placed beneath different types of heat sources. A 1 W gallium nitride (GaN) die was cooled using this method and an analysis is presented regarding the cases where the coolant is static or dynamic inside the microchannel. The second part of the thesis deals with microfluidically reconfigurable microstrip RF circuits, mainly bandpass filters and power amplifiers (PAs). The microfluidic tuning technique is based on the change in the effective dielectric constant that the RF signal “sees” when traveling above two microchannels with different fluids. This technique was used to shift the frequency response of an L-band microstrip bandpass filter by replacing DI water with acetone inside a 60 mil micro-machined cavity. This technique was also used to design reconfigurable matching networks which constitute the main part of the proposed tunable GaN-based PA for S- and C-band applications. The final part of the thesis expands the previous results by combining both cooling and tuning in a single RF design. To prove the concept, cooling and tuning microchannels were integrated into a single package to cool a GaN-based PA and tune its frequency response at the same time from 2.4 GHz to 5.8 GHz and vice versa.
94

Polymer Actuators for Micro Robotic Applications

Edqvist, Erik January 2007 (has links)
<p>In this thesis a multilayer actuator structure is developed for the I-SWARM project. In order to build an energy efficient and low voltage actuator system for the 3x3x3 mm3 robot, the resonance drive mode in combination with a ten layer multilayer structure build upon the most suitable substrate material was used. Two different sizes of the locomotion module were built. The first one is five times larger than the small version. It has five active layers and is simpler to work with and to test. The small module has three 2x0.4 mm can-tilevers on a 3x3mm body and ten active layers.</p><p>The multilayer process involve easily defined flexible printed circuit (FPC) board as substrate material, spin coating piezoelectric poly(vinylidenefluoride- tetrafluoroethylene) P(VDF-TrFE) as active stack material, and evaporated aluminum electrodes on each active polymer layer. By using different shadow masks for each electrode layer, special inter con-tact areas can be contacted from above after the polymer has been removed by an Inductively Coupled Plasma (ICP) etch. The contours of the locomo-tion module was etched in a Reactive Ion Etch (RIE) equipment. Both the cupper layer in the FPC and the electrode layers of the active stack, were used as etch mask.</p><p>The deflections of the cantilevers were measured at low voltages to ensure as realistic drive voltage as possible for the I-SWARM robot. The large struc-ture showed a 250 µm deflection at 4 V and 170 Hz resulting in a Q-value of 19. The deflection of the small structure was 8 µm at 3.3 V and 5000 Hz and the measured Q-value was 31.</p>
95

Films multicouches à base de polysaccharides : étude de la composition interne et délivrance du facteur de croissance BMP-2 / Polysaccharide multilayer films : internal composition and delivery of the BMP-2 growth factor

Crouzier, Thomas 30 March 2010 (has links)
Les films multicouches de polyélectrolytes sont des auto-assemblages de polymères chargés formant des films dont l'épaisseur peut être variée de quelques nm à quelques µm. Un nombre croissant de travaux concerne la compréhension de leur mécanisme d'auto-assemblage et leur utilité pour modifier les propriétés physico-chimiques, topographiques ou mécaniques de surface de (bio)matériaux. Dans cette thèse, nous avons étudié les propriétés de films à base de poly(L-lysine) et de polysaccharides connus pour leur rôle physiologique, notamment le hyaluronane, la chondroïtine sulfate et l'héparine. Les compositions internes de ces films mono-constituants ou à base de mélanges de polyélectrolytes ont été sondées. L'influence de la chimie des polyélectrolytes sur la formation des films, en particulier l'importance des groupements sulfates, a été mise en évidence. Leur potentiel comme vecteur de délivrance d'un facteur de croissance, la BMP-2, a été évalué. De fortes quantités de BMP-2 ont pu être chargées dans les films à base de hyaluronane. Nous avons pu contrôler les quantités insérées en faisant varier la composition chimique des films, leur épaisseur ou la concentration en BMP-2 de la solution de chargement. Puis nous avons mis en évidence une différenciation contrôlée de façon dose-dépendante de cellules C2C12 pluripotentes sur les films bioactifs : différenciation myogénique (en absence de facteur) ou ostéoblastique. De plus, nous montrons qu'un contact des cellules avec le film bioactif est nécessaire pour induire leur différenciation. La protéine est donc présentée par « la phase solide », ce qui constitue un mode de présentation du facteur proche des conditions physiologiques. Des résultats préliminaires obtenus en recouvrant des biomatériaux orthopédiques par les films bioactifs laissent penser que ces films offrent des perspectives intéressantes dans le domaine de la régénération osseuse in vivo. / Polyelectrolyte multilayer films are self-assembled architectures forming nm to µm thick films. During the last decade, they have emerged as an efficient way of modifying materials surface properties such as chemistry, physico-chemical properties, topography as well as mechanical properties. Thanks to the technology's versatility and ease of use, polyelectrolyte multilayer films are now recognized as a new tool for modifying biomaterial surfaces and mediating cell behaviours and implant bio-integration. In this thesis, we studied the properties of poly(L-lysine) and polysaccharide-based multilayer films and focused on their physical-chemical properties as well as on their internal composition. In particular, we studies the influence of their chemistry (presence of carboxylic or sulfate groups) on film formation and characteristics. Three polysaccharides with increasing sulfate group content were chosen for this purpose: hyaluronan, chondroitin sulfate and heparin. The capacity of these films to act as a drug delivery vehicle for BMP-2 (a growth factor able to induce osteo-differentiation) was then assessed. High BMP-2 amounts were successfully loaded and retained in the films in a controlled manner. The loaded amounts could be modulated by varying the film's chemistry, film thickness or BMP-2 concentration in the loading solution. We showed that it is possible to control the extent of C2C12 cell differentiation in osteoblasts when cultured on the bioactive films. Importantly, when no BMP-2 is loaded in the films, the cells differentiated in to myotubes, their most common differentiation pathway. Cells needed a direct contact with the bioactive films to respond to BMP-2, suggesting that BMP-2 is mainly presented to the cells from the solid phase. Preliminary in vivo tests on film-coated orthopaedic biomaterials are encouraging. They showed that these films are interesting candidates for surface modification of orthopaedic biomaterials and may foster bone regeneration.
96

Developing multilayer microfluidic platforms and advancing laser induced fluorescent detection and electrochemical detection to analyze intracellular protein kinases, reactive nitrogen and oxygen species in single cells

Patabadige, Damith Randika E.W. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Christopher T. Culbertson / Recent approaches in analytical separations are being advanced towards the “lab-on-a-chip” concept in which multiple lab functions are integrated into micro/nano fluidic platforms. Among the variety of separation techniques that can be implemented on microfluidic devices, capillary electrophoresis is the most popular as it provides high efficiency, simple, fast and low cost separations. In addition, integrating miniaturized fluid manipulation tools into microfluidic devices with separations is essential for a variety of biological applications. Chapter 1 discusses the fundamentals of capillary electrophoresis and miniaturized fluid manipulation tools and provides an over view of single cell analysis in microfluidics. In chapter 2, the integration of miniaturized peristaltic pumps into multilayer microfluidic platforms is discussed. In addition, device characterization, precise fluid control and high throughput single cell analysis are discussed. As a proof of principle, T-lymphocytes were loaded with two fluorescent probes Carboxyfluorescein diacetate (CFDA) and Oregon green (OG). Thousands of single cells were automatically transported, lysed on these devices and analytes from the lysate were electrophoretically separated. 1120 cells were analyzed over the course of 80 min (14 cells/min) and separation characteristics of analytes released from individual cells were investigated. In the third chapter, the development of microfluidic platforms for the electrochemical detection of nitric oxide (NO) and other reactive nitrogen species (RNS) at the single cell level is discussed. A microfluidic system was developed to perform rapid cell lysis followed by electrochemical detection. Miniaturized microband electrodes were designed and integrated with a microfluidic separation channel. Three alignment techniques (in-channel, end-channel and off-channel configurations) were used to detect the electrochemical response of the analyte of interest. Furthermore, a model analyte (CFDA) was used to demonstrate the potential of performing the simultaneous dual detection with electrochemical and laser induced fluorescence detection. In addition, the same microfluidic platform was adapted to detect intracellular superoxide using laser induced fluorescence. In the fourth chapter, the off-chip integration of optical fiber bridges with multilayer microfluidic chips is discussed. A multimode optical fiber (~10cm long) was integrated between the single cell lysing spot and a spot downstream of the separation channel in order to detect both intact cells and the analyte in the lysate. This technique was used to create two detection spots on the microfluidic platform with the use of a single excitation source and single detector. Fluorescently labeled T-lymphocytes were automatically transported and lysed in a manner similar to that described in chapter 2. Hundreds of single cells were analyzed and the absolute migration time was determined for the analytes in the lysate. In addition, the separation characteristics of fluorescently labeled protein kinase B peptide substrates were investigated. Furthermore, this technique was used to measure cell size and the velocity of intact cells (discussed in 5th chapter) by making use of a light tunneling concept available in multimode optical fibers. All the experiments presented in this dissertation exploit the use of multilayer microfluidic platforms to investigate intracellular components in single cells in a high throughput manner that has several advantages over current conventional techniques.
97

FAST NEURAL NETWORK ALGORITHM FOR SOLVING CLASSIFICATION TASKS

Albarakati, Noor 30 April 2012 (has links)
Classification is one-out-of several applications in the neural network (NN) world. Multilayer perceptron (MLP) is the common neural network architecture which is used for classification tasks. It is famous for its error back propagation (EBP) algorithm, which opened the new way for solving classification problems given a set of empirical data. In the thesis, we performed experiments by using three different NN structures in order to find the best MLP neural network structure for performing the nonlinear classification of multiclass data sets. A developed learning algorithm used here is the batch EBP algorithm which uses all the data as a single batch while updating the NN weights. The batch EBP speeds up training significantly and this is also why the title of the thesis is dubbed 'fast NN …'. In the batch EBP, and when in the output layer a linear neurons are used, one implements the pseudo-inverse algorithm to calculate the output layer weights. In this way one always finds the local minimum of a cost function for a given hidden layer weights. Three different MLP neural network structures have been investigated while solving classification problems having K classes: one model/K output layer neurons, K separate models/One output layer neuron, and K joint models/One output layer neuron. The extensive series of experiments performed within the thesis proved that the best structure for solving multiclass classification problems is a K joint models/One output layer neuron structure.
98

Spreading processes over multilayer and interconnected networks

Darabi Sahneh, Faryad January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Caterina Scoglio / Society increasingly depends on networks for almost every aspect of daily life. Over the past decade, network science has flourished tremendously in understanding, designing, and utilizing networks. Particularly, network science has shed light on the role of the underlying network topology on the dynamic behavior of complex systems, including cascading failure in power-grids, financial contagions in trade market, synchronization, spread of social opinion and trends, product adoption and market penetration, infectious disease pandemics, outbreaks of computer worms, and gene mutations in biological networks. In the last decade, most studies on complex networks have been confined to a single, often homogeneous network. An extremely challenging aspect of studying these complex systems is that the underlying networks are often heterogeneous, composite, and interdependent with other networks. This challenging aspect has very recently introduced a new class of networks in network science, which we refer to as multilayer and interconnected networks. Multilayer networks are an abstract representation of interconnection among nodes representing individuals or agents, where the interconnection has a multiple nature. For example, while a disease can propagate among individuals through a physical contact network, information can propagate among the same individuals through an online information-dissemination network. Another example is viral information dissemination among users of online social networks; one might disseminate information received from a Facebook contact to his or her followers on Twitter. Interconnected networks are abstract representations where two or more simple networks, possibly with different dynamics over them, are interconnected to each other. For example, in zoonotic diseases, a virus can move from the network of animals, with some transmission dynamics, to a human network, with possibly very different dynamics. As communication systems are evolving more and more toward integration with computing, sensing, and control systems, the theory of multilayer and interconnected networks seems to be crucial to successful communication systems development in cyber-physical infrastructures. Among the most relevant dynamics over networks is epidemic spreading. Epidemic spreading dynamics over simple networks exhibit a clear example where interaction between non-complex dynamics at node level and the topology leads to a complex emergent behavior. A substantial line of research during the past decade has been devoted to capturing the role of the network on spreading dynamics, and mathematical tools such as spectral graph theory have been greatly useful for this goal. For example, when the network is a simple graph, the dominant eigenvalue and eigenvector of the adjacency matrix have been proven to be key elements determining spreading dynamics features, including epidemic threshold, centrality of nodes, localization of spreading sites, and behavior of the epidemic model close to the threshold. More generally, for many other dynamics over a single network, dependency of dynamics on spectral properties of the adjacency matrix, Laplacian matrix, or some other graph-related matrix, is well-studied and rigorously established, and practical applications have been successfully derived. In contrast, limited established results exist for dynamics on multilayer and interconnected networks. Yet, an understanding of spreading processes over these networks is very important to several realistic phenomena in modern integrated and composite systems, including cascading failure in power grids, financial contagions in trade market, synchronization, spread of social opinion and trends, product adoption and market penetration, infectious disease pandemics, and outbreak in computer worms. This dissertation focuses on spreading processes on multilayer and interconnected networks, organized in three parts. The first part develops a general framework for modeling epidemic spreading in interconnected and multilayer networks. The second part solves two fundamental problems: introducing the concept of an epidemic threshold curve in interconnected networks, and coexistence phenomena in competitive spreading over multilayer networks. The third part of this dissertation develops an epidemic model incorporating human behavior, where multi-layer network formulation enables modeling and analysis of important features of human social networks, such as an information-dissemination network, as well as contact adaptation. Finally, I conclude with some open research directions in the topic of spreading processes over multilayer and interconnected networks, based on the resulting developments of this dissertation.
99

Improving GEMFsim: a stochastic simulator for the generalized epidemic modeling framework

Fan, Futing January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Caterina M. Scoglio / The generalized epidemic modeling framework simulator (GEMFsim) is a tool designed by Dr. Faryad Sahneh, former PhD student in the NetSE group. GEMFsim simulates stochastic spreading process over complex networks. It was first introduced in Dr. Sahneh’s doctoral dissertation "Spreading processes over multilayer and interconnected networks" and implemented in Matlab. As limited by Matlab language, this implementation typically solves only small networks; the slow simulation speed is unable to generate enough results in reasonable time for large networks. As a generalized tool, this framework must be equipped to handle large networks and contain sufficient support to provide adequate performance. The C language, a low-level language that effectively maps a program to machine in- structions with efficient execution, was selected for this study. Following implementation of GEMFsim in C, I packed it into Python and R libraries, allowing users to enjoy the flexibility of these interpreted languages without sacrificing performance. GEMFsim limitations are not limited to language, however. In the original algorithm (Gillespie’s Direct Method), the performance (simulation speed) is inversely proportional to network size, resulting in unacceptable speed for very large networks. Therefore, this study applied the Next Reaction Method, making the performance irrelevant of network size. As long as the network fits into memory, the speed is proportional to the average node degree of the network, which is not very large for most real-world networks. This study also applied parallel computing in order to advantageously utilize multiple cores for repeated simulations. Although single simulation can not be paralleled as a Markov process, multiple simulations with identical network structures were run simultaneously, sharing one network description in memory.
100

Efeito de solventes orgânicos e da temperatura em filmes multicamadas / Organic solvents and temperature effect on multilayer films

Rodrigues, Isabela Russo 07 October 2014 (has links)
Chapas multicamadas são comumente utilizados em embalagens de produtos industrializados, tendo como função básica conter, proteger e apresentá-los de maneira atrativa ao consumidor final. Os polímeros utilizados para produzir estas chapas devem possuir boas propriedades de barreira para melhor conservação dos produtos e podem ser produzidos através dos processos de co-extrusão e laminação. Uma das formas de conversão das chapas multicamadas em embalagens é o processo de termoformagem, que permite a produção de embalagens em diferentes formatos. Na indústria farmacêutica e agroquímica algumas vezes é necessário o desenvolvimento de produtos a base de solventes agressivos, e com isso a avaliação da resistência química do polímero da embalagem em contato com o produto constitui-se uma ferramenta importante. Para analisar a degradação do material da embalagem podem ser utilizadas as técnicas de termogravimetria (TG), Calorimetria Diferencial de Varredura (DSC) e microscopia eletrônica de varredura (MEV), Espectroscopia de Absorção no Infravermelho por Transformada de Fourier (FT-IR) e Difração de Raios X (DRX). Neste artigo são apresentados os resultados dos estudos de envelhecimento de chapas multicamadas de PE/EVOH/PE + PP/COC (Copolímeros de ciclo-olefina) /PP com exposição aos solventes DMSO e N-meitl-2-pirolidona nas condições ambientais de 30°C/ 75% UR e de 40°C/ 75% UR. O resultado do estudo indica que as técnicas de FT-IR por ATR, DRX e MEV podem auxiliar no acompanhamento do envelhecimento de chapas multicamadas e indicaram que as chapas possuem desempenho bom na situação avaliada. / Multilayer sheets films are used in industrial packaging products, with the basic function contain, protect and present them in attractive way to the final consumer. The polymers used to produce these plates should have good barrier properties and a better conservation of the products may be produced by co-extrusion and lamination processes. One way of converting the multilayer sheet packaging is the thermoforming process that allows the production of different packaging formats. In the pharmaceutical and agrochemical industry is sometimes necessary to develop products to aggressive solvent-based, and thus the assessment of the chemical resistance of the polymer of the packaging in contact with the product constitutes an important tool. To analyze the degradation of the packaging material may be used thermogravimetric technique (TG), Differential Scanning Calorimetry (DSC) and scanning electron microscopy (SEM), Absorption Infrared Spectroscopy Fourier Transform (FT-IR) and X-Ray Diffraction (XRD). This article presents the results of aging studies of multilayer sheets of PE / EVOH / PE + PP / COC (cyclic olefin copolymers) / PP with exposure to DMSO solvents and N-2-pyrrolidone-meitl environmental conditions 30°C / 75% RH and 40°C / 75% RH. The result of the study indicates that the FT-IR techniques for ATR, XRD and SEM can assist in monitoring the aging of multilayer plates and indicated that the plates have good performance in the situation assessed.

Page generated in 0.0298 seconds