Spelling suggestions: "subject:"multiphase"" "subject:"multiphases""
411 |
Impedance wire-mesh sensor for multiphase flows: contributions to an improved measurement accuracyde Assis Dias, Felipe 06 February 2024 (has links)
Multiphase flows are simultaneous flows of two or more immiscible fluids in a pipe or vessel. Multiphase flows occur in a wide variety of industrial applications, such as chemical reactors, power generation, oil and gas production or transportation, etc. In most of these applications, efficiency and process reliability depend not insignificantly on the composition and flow morphology of these multiphase flows. Therefore, accurate determination of parameters such as phase fractions and their spatial distribution, as well as measurement of volumetric or mass flow rates, is essential to optimize and ensure correct operation of the equipment. For a better prediction of flow characteristics of multiphase systems, the development and validation of analytical models and CFD codes for simulations of multiphase flows has been promoted for some time in thermofluid dynamics research. For this purpose, the in-depth analysis of multiphase flows with high spatial and temporal resolution is essential. However, to date, there is no universal sensor that can directly measure all the required flow parameters over the full range of all flow conditions. Therefore, several strategies have been developed to solve this problem. For pure measurement of fluid composition and mixture volume flow, for example, the fluid mixture is often conditioned before measurement by separation into individual phases or by homogenization. However, this does not allow any more information about the flow morphology. In situations where the fluid cannot be preconditioned, for example when investigating bubble size distributions or predicting plug flows, imaging techniques such as wire-mesh sensors therefore play an important role because they provide cross-sectional images of the flow in rapid succession. This information can be used to determine phase distributions and identify flow regimes, which in turn can serve as input to other sensors to find optimal operating points. In addition, such information is important for validating models and numerical simulations.
Although wire-mesh sensors are very attractive and now widely used due to their high spatial and temporal resolution, the measurement signals obtained from the sensor can be corrupted by energy losses and channel crosstalk under certain conditions. Therefore, a better understanding of the real physical conditions when using wire-mesh sensors is essential to improve the measurement accuracy and to extend the range of applications, e.g., for the measurement of media with very high conductivities or for an accurate quantification of individual phases in three-phase flows. In the present work, the current limitations of existing wire-mesh sensor systems are investigated in detail, thus providing a basis for technical improvements and the development of new methods for better interpretation of the measured values of wire-mesh sensors. For this purpose, the electronic measurement principle and the real sensor geometries are first investigated with respect to inherent energy losses and channel crosstalk. Based on mixing models, a method for visualization and quantification of three-phase gas-oil-water flows even in the presence of dispersions is presented. In addition, nonlinearities of wire-mesh sensors are predicted for the first time by a hybrid model based on the finite element method, which also incorporates the real parameters of the electronic components of signal generation and measurement. This model is subsequently used to generate synthetic data and to test new correction methods. Finally, two methods are proposed to compensate for unavoidable energy losses. The first method allows inherent determination of energy losses that cannot be suppressed by further circuit optimization. The second method allows determination of the voltage drop caused by the impedance of the electrodes when measured in highly conductive liquids. Numerical and experimental analyses show an improvement in the measurement accuracy of wire-mesh sensors with respect to the average and local phase fractions. The deviations of the average phase fraction were reduced from more than 15% to less than 2% and the deviations in local measurements from more than 30% to less than 5%.:Abstract 3
Zusammenfassung 5
Statement of authorship 9
Acronyms 13
Symbols 15
1. Introduction 17
2. State of the science and technology 21
3. Wire-mesh sensor and experimental test facilities 43
4. Three-phase flow measurement based on dual-modality wire-mesh sensor 53
5. Wire-mesh sensor model based on finite-element method and circuit simulation 67
6. Analysis of non-linear effects in measurements of wire-mesh sensor 79
7. Methods for improving the measurement accuracy of wire-mesh sensors 87
8. Conclusions and outlook 97
Bibliography 101
Appendices 111
A. List of scientific publications 113
|
412 |
On the Topology and Control of Six-Phase Current-Source Inverter (CSI) for the Powertrain of Heavy-Duty EVsSalem, Ahmed January 2022 (has links)
The electrification of transportation is increasingly of interest to governments around the world as a means of contributing to the achievement of climate change goals. Transportation is a significant source of greenhouse gas emissions, but it is also the backbone of the global economy and local mobility. Electrification is widely seen as a promising pathway to reducing greenhouse gas emissions from transportation while continuing to support economic growth.
Multiphase machines have distinctive features that draw attention in the transportation electrification domain due to their features. Recently, powertrains based on the current-source inverter (CSI) are getting more attention to be a more reliable structure for Electric Vehicles (EVs) by replacing the dc-link capacitor with a choke inductor. This thesis combines these two technologies to develop a more reliable, compact powertrain for heavy-duty electric vehicles.
First, a survey covers the recent advances in several aspects such as topology, control, and performance to evaluate the possibility and the future of exploiting them more in EV applications. The six-phase drives are extensively covered here because of their inherent structure as a dual three-phase system which eases the production process. The survey presents the different topologies used in dual three-phase drives, the modulation techniques used to operate them, the status of using multiphase drives in traction applications industrially, and the upcoming trends toward promoting this technology.
New powertrain configurations for heavy-duty electric vehicles (HDEV) are proposed based on current-source inverters (CSI) and asymmetrical six-phase electric machines. Since the six-phase CSI comprises two three-phase CSIs, multiple configurations can arise based on the connection between the two CSIs. In this context, the proposed powertrain configurations are based on parallel, cascaded, and standalone six-phase CSIs. The standalone topology is based on separating the two three-phase converters by supplying each converter with a dedicated dc-dc converter.
A new and straightforward method is proposed to extend the six-phase standalone CSI. The proposed technique employs the vector space decomposition (VSD) to mitigate the inverter current harmonics and extend the linear modulation region by about 8%. For motor drive applications, increasing the fundamental output component can reflect higher torque production capability for the same drive size, given that thermal limits are not exceeded.
Moreover, to increase the drive's reliability, space vector modulation (SVM) techniques are developed to operate the six-phase CSI while reducing the common-mode voltage (CMV) content associated with the switching of semiconductors. The SVM techniques select the switching states associated with the minimum CMV value offline to eliminate the need for measurements.
Experimental validation of the proposed algorithms is presented to operate a scaled-down six-phase PMSM fed by the proposed powertrain configuration. These proposed techniques make the CSI- based powertrain a promising solution for future HDEVs in terms of cost, performance, and reliability. / Thesis / Candidate in Philosophy
|
413 |
Summary of Laboratory Multiphase Flow Studies in 2” Diameter Pipe at the University of Dayton and Comparison to OLGA PredictionsDuran, Tibo 03 June 2015 (has links)
No description available.
|
414 |
Characterization of Highly Concentrated Elastin-like Polypeptide Solutions:Rheometric Properties and Phase Separation AnalysisOtto, Kevin Michael 20 May 2015 (has links)
No description available.
|
415 |
Computational Modeling and Simulation of Thermal-Fluid Flow and Topology Formation in Laser Metal Additive ManufacturingVincent, Timothy John January 2017 (has links)
No description available.
|
416 |
Modeling Particle Drag in Accelerating Flows with Implications for SBLI in PIV - A Numerical AnalysisKalagotla, Dilip 24 July 2018 (has links)
No description available.
|
417 |
Numerical Investigation of Vapor and Gaseous Cavitation in Squeeze-Film Damper BearingsSarkar, Snigdha 22 May 2018 (has links)
No description available.
|
418 |
Effects of drag reducing agents on pressure drop and flow characteristics in multiphase inclined pipelinesDaas, Mutaz A. January 2000 (has links)
No description available.
|
419 |
Visualization and mathematical modelling of horizontal multiphase slug flowGopal, Madan January 1994 (has links)
No description available.
|
420 |
An experimental study of corrosion inhibitor performance and slug flow characteristics in horizontal multiphase pipelinesMenezes, Richard Joseph January 1994 (has links)
No description available.
|
Page generated in 0.0347 seconds