• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 357
  • 133
  • 75
  • 52
  • 8
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 805
  • 500
  • 171
  • 165
  • 102
  • 101
  • 99
  • 81
  • 80
  • 80
  • 73
  • 73
  • 71
  • 69
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Multiphase Hydrodynamics in Flotation Systems

Brady, Michael Richard 13 October 2009 (has links)
Flotation is a complex, multiphase process used to separate minerals. Four problems central to the fundamentals of the flotation process were studied. A multiphase grid turbulence experiment was conducted to verify particle collision models. The slip velocities of solid particles and bubbles were measured using Digital Particle Image Velocimetry (DPIV). The experimental results were compared with the predictions from empirical and theoretical collision models. Time-resolved DPIV was used to measure the turbulent velocity field in a Rushton turbine around the impeller region. The turbulence quantities were found by removing the periodic component from the blade passing, which is a dominant part of the measured velocities near the impeller. We provide evidence that larger, biased dissipation and turbulent kinetic energy values are estimated in the vicinity of the impeller due to the periodic component of the blade passage. The flow was found to be anisotropic close to the impeller. Vortex detection revealed that the tip vortices travel in a nearly radial direction from the impeller for small Reynolds numbers and with a wider distribution for higher Reynolds numbers. The rise of a buoyant bubble and its interaction with a free liquid surface was experimentally investigated using Time-Resolved Digital Particle Image Velocimetry as a function of bubble size, and surfactant concentration of the fluid medium. It is shown that the presence of a surfactant significantly affected the characteristics of the velocity field during the rise and interaction with the free surface. This difference is attributed to the adsorption coverage of the surfactant at the bubble-fluid interface. Wake profiles were compared. The presence of large vortices were observed and found to play a significant role. Finally, Numerical and experimental results of stable and unstable foams are presented by comparing liquid fractions and bubble sizes. There was good agreement between the experiments and numerical modeling in free drainage and forced drainage experiments. In addition, foam coarsening was measured and characterized experimentally. Each of the problems investigated have added to the understanding in the underlying physics of the flotation process and can lead to more accurate modeling. The ultimate goal of this work is to contribute to the design of more effective and efficient flotation machines. / Ph. D.
432

Experimental Study of Two-Phase Cavitating Flows and Data Analysis

Ge, Mingming 25 May 2022 (has links)
Cavitation can be defined as the breakdown of a liquid (either static or in motion) medium under very low pressure. The hydrodynamic happened in high-speed flow, where local pressure in liquid falls under the saturating pressure thus the liquid vaporizes to form the cavity. During the evolution and collapsing of cavitation bubbles, extreme physical conditions like high-temperature, high-pressure, shock-wave, and high-speed micro-jets can be generated. Such a phenomenon shall be prevented in hydraulic or astronautical machinery due to the induced erosion and noise, while it can be utilized to intensify some treatment processes of chemical, food, and pharmaceutical industries, to shorten sterilization times and lower energy consumption. Advances in the understanding of the physical processes of cavitating flows are challenging, mainly due to the lack of quantitative experimental data on the two-phase structures and dynamics inside the opaque cavitation areas. This dissertation is aimed at finding out the physical mechanisms governing the cavitation instabilities and making contributions in controlling hydraulic cavitation for engineering applications. In this thesis, cavitation developed in various convergent-divergent (Venturi) channels was studied experimentally using the ultra-fast synchrotron X-ray imaging, LIF Particle Image Velocimetry, and high-speed photography techniques, to (1) investigate the internal structures and evolution of bubble dynamics in cavitating flows, with velocity information obtained for two phases; (2) measure the slip velocity between the liquid and the vapor to provide the validation data for the numerical cavitation models; (3) consider the thermodynamic effects of cavitation to establish the relation between the cavitation extent and the fluid temperature, then and optimize the cavitation working condition in water; (4) seek the coherent structures of the complicated high-turbulent cavitating flow to reduce its randomness using data-driven methods. / Doctor of Philosophy / When the pressure of a liquid is below its saturation pressure, the liquid will be vaporized into vapor bubbles which can be called cavitation. In many hydraulic machines like pumps, propulsion systems, internal combustion engines, and rocket engines, this phenomenon is quite common and could induce damages to the mechanical systems. To understand the mechanisms and further control cavitation, investigation of the bubble inception, deformation, collapse, and flow regime change is mandatory. Here, we performed the fluid mechanics experiment to study the unsteady cavitating flow underlying physics as it occurs past the throat of a Venturi nozzle. Due to the opaqueness of this two-phase flow, an X-ray imaging technique is applied to visualize the internal flow structures in micrometer scales with minor beam scattering. Finally, we provided the latest physical model to explain the different regimes that appear in cavitation. The relationship between the cavitation length and its shedding regimes, and the dominant mechanism governing the transition of regimes are described. A combined suppression parameter is developed and can be used to enhance or suppress the cavitation intensity considering the influence of temperature.
433

Design and Implementation of a Multiphase Buck Converter for Front End 48V-12V Intermediate Bus Converters

Salvo, Christopher 25 July 2019 (has links)
The trend in isolated DC/DC bus converters is to increase the output power in the same brick form factors that have been used in the past. Traditional intermediate bus converters (IBCs) use silicon power metal oxide semiconductor field effect transistors (MOSFETs), which recently have reached the limit in terms of turn on resistance (RDSON) and switching frequency. In order to make the IBCs smaller, the switching frequency needs to be pushed higher, which will in turn shrink the magnetics, lowering the converter size, but increase the switching related losses, lowering the overall efficiency of the converter. Wide-bandgap semiconductor devices are becoming more popular in commercial products and gallium nitride (GaN) devices are able to push the switching frequency higher without sacrificing efficiency. GaN devices can shrink the size of the converter and provide better efficiency than its silicon counterpart provides. A survey of current IBCs was conducted in order to find a design point for efficiency and power density. A two-stage converter topology was explored, with a multiphase buck converter as the front end, followed by an LLC resonant converter. The multiphase buck converter provides regulation, while the LLC provides isolation. With the buck converter providing regulation, the switching frequency of the entire converter will be constant. A constant switching frequency allows for better electromagnetic interference (EMI) mitigation. This work includes the details to design and implement a hard-switched multiphase buck converter with planar magnetics using GaN devices. The efficiency includes both the buck efficiency and the overall efficiency of the two-stage converter including the LLC. The buck converter operates with 40V - 60V input, nominally 48V, and outputs 36V at 1 kW, which is the input to the LLC regulating 36V – 12V. Both open and closed loop was measured for the buck and the full converter. EMI performance was not measured or addressed in this work. / Master of Science / Traditional silicon devices are widely used in all power electronics applications today, however they have reached their limit in terms of size and performance. With the introduction of gallium nitride (GaN) field effect transistors (FETs), the limits of silicon can now be passed with GaN providing better performance. GaN devices can be switched at higher switching frequencies than silicon, which allows for the magnetics of power converters to be smaller. GaN devices can also achieve higher efficiency than silicon, so increasing the switching frequency will not hurt the overall efficiency of the power converter. GaN devices can handle higher switching frequencies and larger currents while maintaining the same or better efficiencies over their silicon counterparts. This work illustrates the design and implementation of GaN devices into a multiphase buck converter. This converter is the front end of a two-stage converter, where the buck will provide regulation and the second stage will provide isolation. With the use of higher switching frequencies, the magnetics can be decreased in size, meaning planar magnetics can be used in the power converter. Planar magnetics can be placed directly inside of the printing circuit board (PCB), which allows for higher power densities and easy manufacturing of the magnetics and overall converter. Finally, the open and closed loop were verified and compared to the current converters that are on the market in the 48V – 12V area of intermediate bus converters (IBCs).
434

Theoretical and finite-element investigation of the mechanical response of spinodal structures

Read, D.J., Teixeira, P.I., Duckett, R.A., Sweeney, John, McLeish, T.C.B. January 2002 (has links)
no / In recent years there have been major advances in our understanding of the mechanisms of phase separation in polymer and copolymer blends, to the extent that good control of phase-separated morphology is a real possibility. Many groups are studying the computational simulation of polymer phase separation. In the light of this, we are exploring methods which will give insight into the mechanical response of multiphase polymers. We present preliminary results from a process which allows the production of a two-dimensional finite-element mesh from the contouring of simulated composition data. We examine the stretching of two-phase structures obtained from a simulation of linear Cahn-Hilliard spinodal phase separation. In the simulations, we assume one phase to be hard, and the other soft, such that the shear modulus ratio ... is large (... ). We indicate the effect of varying composition on the material modulus and on the distribution of strains through the stretched material. We also examine in some detail the symmetric structures obtained at 50% composition, in which both phases are at a percolation threshold. Inspired by simulation results for the deformation of these structures, we construct a "scaling" theory, which reproduces the main features of the deformation. Of particular interest is the emergence of a lengthscale, below which the deformation is non-affine. This length is proportional to ... , and hence is still quite small for all reasonable values of this ratio. The same theory predicts that the effective composite modulus scales also as ..., which is supported by the simulations.
435

Parallel implementation and application of particle scale heat transfer in the Discrete Element Method

Amritkar, Amit Ravindra 25 July 2013 (has links)
Dense fluid-particulate systems are widely encountered in the pharmaceutical, energy, environmental and chemical processing industries. Prediction of the heat transfer characteristics of these systems is challenging. Use of a high fidelity Discrete Element Method (DEM) for particle scale simulations coupled to Computational Fluid Dynamics (CFD) requires large simulation times and limits application to small particulate systems.  The overall goal of this research is to develop and implement parallelization techniques which can be applied to large systems with O(105- 106) particles to investigate particle scale heat transfer in rotary kiln and fluidized bed environments. The strongly coupled CFD and DEM calculations are parallelized using the OpenMP paradigm which provides the flexibility needed for the multimodal parallelism encountered in fluid-particulate systems. The fluid calculation is parallelized using domain decomposition, whereas N-body decomposition is used for DEM. It is shown that OpenMP-CFD with the first touch policy, appropriate thread affinity and careful tuning scales as well as MPI up to 256 processors on a shared memory SGI Altix. To implement DEM in the OpenMP framework, ghost particle transfers between grid blocks, which consume a substantial amount of time in DEM, are eliminated by a suitable global mapping of the multi-block data structure. The global mapping together with enforcing perfect particle load balance across OpenMP threads results in computational times between 2-5 times faster than an equivalent MPI implementation. Heat transfer studies are conducted in a rotary kiln as well as in a fluidized bed equipped with a single horizontal tube heat exchanger. Two cases, one with mono-disperse 2 mm particles rotating at 20 RPM and another with a poly-disperse distribution ranging from 1-2.8 mm and rotating at 1 RPM are investigated. It is shown that heat transfer to the mono-disperse 2 mm particles is dominated by convective heat transfer from the thermal boundary layer that forms on the heated surface of the kiln. In the second case, during the first 24 seconds, the heat transfer to the particles is dominated by conduction to the larger particles that settle at the bottom of the kiln. The results compare reasonably well with experiments. In the fluidized bed, the highly energetic transitional flow and thermal field in the vicinity of the tube surface and the limits placed on the grid size by the volume-averaged nature of the governing equations result in gross under prediction of the heat transfer coefficient at the tube surface. It is shown that the inclusion of a subgrid stress model and the application of a LES wall function (WMLES) at the tube surface improves the prediction to within ± 20% of the experimental measurements. / Ph. D.
436

Verification of Compressible and Incompressible Computational Fluid Dynamics Codes and Residual-based Mesh Adaptation

Choudhary, Aniruddha 06 January 2015 (has links)
Code verification is the process of ensuring, to the degree possible, that there are no algorithm deficiencies and coding mistakes (bugs) in a scientific computing simulation. In this work, techniques are presented for performing code verification of boundary conditions commonly used in compressible and incompressible Computational Fluid Dynamics (CFD) codes. Using a compressible CFD code, this study assesses the subsonic inflow (isentropic and fixed-mass), subsonic outflow, supersonic outflow, no-slip wall (adiabatic and isothermal), and inviscid slip-wall. The use of simplified curved surfaces is proposed for easier generation of manufactured solutions during the verification of certain boundary conditions involving many constraints. To perform rigorous code verification, general grids with mixed cell types at the verified boundary are used. A novel approach is introduced to determine manufactured solutions for boundary condition verification when the velocity-field is constrained to be divergence-free during the simulation in an incompressible CFD code. Order of accuracy testing using the Method of Manufactured Solutions (MMS) is employed here for code verification of the major components of an open-source, multiphase flow code - MFIX. The presence of two-phase governing equations and a modified SIMPLE-based algorithm requiring divergence-free flows makes the selection of manufactured solutions more involved than for single-phase, compressible flows. Code verification is performed here on 2D and 3D, uniform and stretched meshes for incompressible, steady and unsteady, single-phase and two-phase flows using the two-fluid model of MFIX. In a CFD simulation, truncation error (TE) is the difference between the continuous governing equation and its discrete approximation. Since TE can be shown to be the local source term for the discretization error, TE is proposed as the criterion for determining which regions of the computational mesh should be refined/coarsened. For mesh modification, an error equidistribution strategy to perform r-refinement (i.e., mesh node relocation) is employed. This technique is applied to 1D and 2D inviscid flow problems where the exact (i.e., analytic) solution is available. For mesh adaptation based upon TE, about an order of magnitude improvement in discretization error levels is observed when compared with the uniform mesh. / Ph. D.
437

Multiscale Modeling and Uncertainty Quantification of Multiphase Flow and Mass Transfer Processes

Donato, Adam Armido 10 January 2015 (has links)
Most engineering systems have some degree of uncertainty in their input and operating parameters. The interaction of these parameters leads to the uncertain nature of the system performance and outputs. In order to quantify this uncertainty in a computational model, it is necessary to include the full range of uncertainty in the model. Currently, there are two major technical barriers to achieving this: (1) in many situations -particularly those involving multiscale phenomena-the stochastic nature of input parameters is not well defined, and is usually approximated by limited experimental data or heuristics; (2) incorporating the full range of uncertainty across all uncertain input and operating parameters via conventional techniques often results in an inordinate number of computational scenarios to be performed, thereby limiting uncertainty analysis to simple or approximate computational models. This first objective is addressed through combining molecular and macroscale modeling where the molecular modeling is used to quantify the stochastic distribution of parameters that are typically approximated. Specifically, an adsorption separation process is used to demonstrate this computational technique. In this demonstration, stochastic molecular modeling results are validated against a diverse range of experimental data sets. The stochastic molecular-level results are then shown to have a significant role on the macro-scale performance of adsorption systems. The second portion of this research is focused on reducing the computational burden of performing an uncertainty analysis on practical engineering systems. The state of the art for uncertainty analysis relies on the construction of a meta-model (also known as a surrogate model or reduced order model) which can then be sampled stochastically at a relatively minimal computational burden. Unfortunately these meta-models can be very computationally expensive to construct, and the complexity of construction can scale exponentially with the number of relevant uncertain input parameters. In an effort to dramatically reduce this effort, a novel methodology "QUICKER (Quantifying Uncertainty In Computational Knowledge Engineering Rapidly)" has been developed. Instead of building a meta-model, QUICKER focuses exclusively on the output distributions, which are always one-dimensional. By focusing on one-dimensional distributions instead of the multiple dimensions analyzed via meta-models, QUICKER is able to handle systems with far more uncertain inputs. / Ph. D.
438

Numerical Analysis of Multiphase Flow in Bubble Columns and Applications for Microbial Fuel Cells

Picardi, Robert N. 15 April 2015 (has links)
Computational fluid dynamics (CFD) modeling was used to predict the hydrodynamics of a column reactor. Bubble columns have applications across many engineering disciplines and improved modeling techniques help to increase the accuracy of numerical predictions. An Eulerian-Eulerian multi-fluid model was used to simulate fluidization and to capture the complex physics associated therewith. The commercial code ANSYS Fluent was used to study two-dimensional gas-liquid bubble columns. A comprehensive parameter study, including a detailed investigation of grid resolution was performed. Specific attention was paid to the bubble diameter, as it was shown to be related to cell size have significant effects on the characteristics of the flow. The parameters used to compare the two-dimensional (2D) cases to experimental results of Rampure, et. al. were then applied to a three-dimensional (3D) geometry. It was demonstrated that the increase in accuracy from 2D to 3D is negligible compared to the increase in CPU required to simulate the entire 3D domain. Additionally, the reaction chamber of a microbial fuel cell (MFC) was modeled and a preliminary parameter study investigating inlet velocity, temperature, and acetate concentration was conducted. MFCs are used in wastewater treatment and have the potential to treat water while simultaneously harvesting electricity. The spiral spacer and chemical reactions were modeled in a 3D geometry, and it was determined that inlet velocity was the most influential parameter that was simulated. There were also significant differences between the 2D and 3D geometries used to predict the MFC hydrodynamics. / Master of Science
439

Particle-Resolving Simulations of Dune Migration: Novel Algorithms and Physical Insights

Sun, Rui 26 June 2017 (has links)
Sediment transport is ubiquitous in aquatic environments, and the study of sediment transport is important for both engineering and environmental reasons. However, the understanding and prediction of sediment transport are hindered by its complex dynamics and regimes. In this dissertation, the open-source solver SediFoam is developed for high-fidelity particle-resolving simulations of various sediment transport problems based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional flow simulations on unstructured mesh; LAMMPS is a massively parallel DEM solver for molecular dynamics. To enable the particle-resolving simulation of sediment transport on an arbitrary mesh, a diffusion-based algorithm is used in SediFoam to obtain the averaged Eulerian fields from discrete particle data. The parallel interface is also implemented for the communication of the two open-source solvers. Extensive numerical simulations are performed to validate the capability of SediFoam in the modeling of sediment transport problems. The predictions of various sediment transport regimes, including `flat bed in motion', `small dune' and `vortex dune', are in good agreement of with the experimental results and those obtained by using interface resolved simulations. The capability of the solver in the simulation of sediment transport in the oscillatory boundary layer is also demonstrated. Moreover, this well-validated high-fidelity simulation tool has been used to probe the physics of particle dynamics in self-generated bedforms in various hydraulic conditions. The results obtained by using SediFoam not only bridge the gaps in the experimental results but also help improve the engineering practice in the understanding of sediment transport. By using the particle-resolving simulation results and the insights generated therein, the closure terms in the two-fluid models or hydro-morphodynamic models can be improved, which can contribute to the numerical modeling of sediment transport in engineering scales. / Ph. D. / The study and prediction of sediment transport are important for both engineering and environmental reasons. However, the understanding of sediment transport is hindered by the complex dynamics of sediment particles in turbulent flow. In this dissertation, the open-source solver SediFoam is developed for the simulations of various sediment transport problems. Both turbulent flow and particle motions can be resolved by using SediFoam, and thus high-fidelity predictions can be provided. The SediFoam is validated extensively with respect to various sediment transport applications, including “flat bed in motion”, “dune generation and migration”, and “sediment transport in oscillatory flow”. The results obtained by using SediFoam are in good agreement of with available data in the literature. By using this well-validated high-fidelity simulation tool, the physics of particle dynamics in sediment bed and self-generated dunes are investigated. Physical insights of sediment transport that have not been captured by experimental measurements are provided by the high-fidelity simulations. Although the domain length in high-fidelity simulations is only 0.1 m, the results can also be used to improve low-fidelity numerical modeling in macro-scale engineering problems.
440

Frequency Locking Techniques Based on Envelope Detection for Injection-Locked Signal Sources

Shin, Dongseok 21 July 2017 (has links)
Signal generation at high frequency has become increasingly important in numerous wireline and wireless applications. In many gigahertz and millimeter-wave frequency ranges, conventional frequency generation techniques have encountered several design challenges in terms of frequency tuning range, phase noise, and power consumption. Recently, injection locking has been a popular technique to solve these design challenges for frequency generation. However, the narrow locking range of the injection locking techniques limits their use. Furthermore, they suffer from significant reference spur issues. This dissertation presents novel frequency generation techniques based on envelope detection for low-phase-noise signal generation using injection-locked frequency multipliers (ILFMs). Several calibration techniques using envelope detection are introduced to solve conventional problems in injection locking. The proposed topologies are demonstrated with 0.13um CMOS technology for the following injection-locked frequency generators. First, a mixed-mode injection-frequency locked loop (IFLL) is presented for calibrating locking range and phase noise of an injection-locked oscillator (ILO). The IFLL autonomously tracks the injection frequency by processing the AM modulated envelope signal bearing a frequency difference between injection frequency and ILO free-running frequency in digital feedback. Second, a quadrature injection-locked frequency tripler using third-harmonic phase shifters is proposed. Two capacitively-degenerated differential pairs are utilized for quadrature injection signals, thereby increasing injection-locking range and reducing phase error. Next, an injection-locked clock multiplier using an envelope-based frequency tracking loop is presented for a low phase noise signal and low reference spur. In the proposed technique, an envelope detector constantly monitors the VCO's output waveform distortion caused by frequency difference between the VCO frequency and reference frequency. Therefore, the proposed techniques can compensate for frequency variation of the VCO due to PVT variations. Finally, this dissertation presents a subharmonically injection-locked PLL (SILPLL), which is cascaded with a quadrature ILO. The proposed SILPLL adopts an envelope-detection based injection-timing calibration for synchronous reference pulse injection into a VCO. With one of the largest frequency division ratios (N=80) reported so far, the SILPLL can achieve low RMS jitter and reference spur. / Ph. D. / Signal generation at high frequency has become increasingly important in numerous wireline and wireless applications. In many gigahertz and millimeter-wave frequency ranges, conventional frequency generation techniques have encountered several design challenges in terms of frequency tuning range, phase noise, and power consumption. Recently, injection locking which synchronizes a signal frequency has been a popular technique to solve these design challenges for frequency generation. However, narrow operation ranges of the injection locking techniques limit their use. Furthermore, they suffer from significant noise degradation. This dissertation presents studies of frequency generation techniques based on envelope detection (amplitude modulation) for low-phase-noise signal generation using injection-locked frequency multipliers. Several calibration techniques using envelope detection are introduced to solve conventional problems in injection locking. First, a mixed-mode injection-frequency locked loop is presented for calibrating locking range and phase noise of an injection-locked oscillator. Second, a quadrature injection-locked frequency tripler using third-harmonic phase shifters is proposed to increase injection-locking range and reduce phase error. Third, an injection-locked frequency multiplier using an envelope-based frequency tracking loop is presented for a low phase noise signal and low noise degradation. Finally, this dissertation presents a subharmonically injection-locked PLL with a novel injection-timing calibration circuit, which is connected to a quadrature frequency multiplier. The proposed designs are demonstrated with 0.13µm CMOS technology.

Page generated in 0.0309 seconds