• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application-Directed DVFS using Multiple Clock Domains on Graphics Hardware

Li, Juan 14 January 2009 (has links)
As handheld devices have become increasingly popular, powerful programmable graphics hardware for mobile and handheld devices has been deployed. While many resources on mobile devices are limited, the predominant problem for mobile devices is their limited battery power. Several techniques have been proposed to increase the energy efficiency of mobile applications and improve battery life. In this thesis, we propose a new dynamic voltage and frequency scaling (DVFS) on Graphics Processing Units (GPU). In most cases, cues within the graphics appli- cation can be used to predict portions of a GPU that will be used or unused when the application is run. We partition the GPU into six clock domains that can be clocked at different rates. Specifically, each domain it has its own voltage and frequency set- ting based on its predicted workload to save energy without reducing applications frame rates. In addition, we propose an signature-based algorithm for predicting the workload offered to our six clock domains by a given application to decide voltage and frequency settings. We conduct experiments and compare the results of our new signature based workload prediction algorithm with some other traditional interval based workload prediction algorithms. Our results show that our signature-based prediction can save 30-50% energy without afecting application frame rates.
2

Petri Net Model Based Energy Optimization Of Programs Using Dynamic Voltage And Frequency Scaling

Arun, R 06 1900 (has links) (PDF)
High power dissipation and on-chip temperature limit performance and affect reliability in modern microprocessors. For servers and data centers, they determine the cooling cost, whereas for handheld and mobile systems, they limit the continuous usage of these systems. For mobile systems, energy consumption affects the battery life. It can not be ignored for desktop and server systems as well, as the contribution of energy continues to go up in organizations’ budgets, influencing strategic decisions, and its implications on the environment are getting appreciated. Intelligent trade-offs involving these quantities are critical to meet the performance demands of many modern applications. Dynamic Voltage and Frequency Scaling (DVFS) offers a huge potential for designing trade-offs involving energy, power, temperature and performance of computing systems. In our work, we propose and evaluate DVFS schemes that aim at minimizing energy consumption while meeting a performance constraint, for both sequential and parallel applications. We propose a Petri net based program performance model, parameterized by application properties, microarchitectural settings and system resource configuration, and use this model to find energy efficient DVFS settings. We first propose a DVFS scheme using this model for sequential programs running on single core multiple clock domain (MCD) processors, and evaluate this on a MCD processor simulator. We then extend this scheme for data parallel (Single Program Multiple Data style) applications, and then generalize it for stream applications as well, and evaluate these two schemes on a full system CMP simulator. Our experimental evaluation shows that the proposed schemes achieve significant energy savings for a small performance degradation.

Page generated in 0.0647 seconds