• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of tumor suppressor genes in multiple myeloma.

January 1998 (has links)
by Nellie Yuk Fei Chung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 111-120). / Abstract also in Chinese. / Abstract --- p.i / List of Abbreviations --- p.iii / Acknowledgements --- p.iv / Publication of this study --- p.vi / Table of Contents --- p.vii / Chapter Chapter1: --- Introduction --- p.1 / Chapter 1.1 --- Multiple Myeloma --- p.2 / Chapter 1.2 --- The Problem --- p.2 / Chapter Chapter2: --- Literature Review --- p.5 / Chapter 2.1 --- Molecular Genetics of Multiple Myeloma --- p.6 / Chapter 2.1.1 --- Cytogenetics --- p.6 / Chapter 2.2 --- Alterations of Proto-Oncogenes --- p.9 / Chapter 2.2.1 --- c-myc --- p.9 / Chapter 2.2.2 --- Ras --- p.10 / Chapter 2.2.3 --- Bcl-2 and Related Protein --- p.10 / Chapter 2.3 --- Alteration of Tumor-Suppressor genes --- p.11 / Chapter 2.3.1 --- p53 Gene Mutations --- p.11 / Chapter 2.3.2 --- Retinoblastoma (Rb) Gene --- p.11 / Chapter 2.3.3 --- p16 and p15 Genes --- p.13 / Chapter Chapter3: --- DNA Methylation and Cancers --- p.14 / Chapter 3.1 --- Role of DNA Methylation --- p.15 / Chapter 3.2 --- CpG Islands --- p.15 / Chapter 3.3 --- Abnormalities of DNA Methylation in Neoplasia --- p.16 / Chapter 3.3.1 --- DNA Hypomethylation in Cancer --- p.16 / Chapter 3.3.2 --- DNA Methyltransferase Activity in Cancer --- p.17 / Chapter 3.4 --- Regional DNA Hypermethylation in Cancer --- p.17 / Chapter 3.4.1 --- p16 and p15 Genes in Solid Tumors --- p.18 / Chapter 3.4.2 --- The p16 and p15 Genes in Leukemia and other Hematopoietic Malignancies --- p.19 / Chapter 3.4.3 --- Retinoblastoma Gene --- p.20 / Chapter 3.5 --- Mechanism Underlying the DNA Methylation Changes --- p.21 / Chapter Chapter4: --- Background of Study --- p.23 / Chapter 4.1 --- Background of Study --- p.24 / Chapter 4.2 --- Project Objectives --- p.27 / Chapter Chapter5: --- Materials and Methods --- p.29 / Chapter 5.1 --- Patients Samples --- p.30 / Chapter 5.2 --- Normal Controls --- p.30 / Chapter 5.3 --- Storage of the Samples --- p.32 / Chapter 5.4 --- Materials --- p.32 / Chapter 5.4.1 --- Chemicals --- p.32 / Chapter 5.4.2 --- Primers --- p.33 / Chapter 5.4.3 --- Enzymes --- p.35 / Chapter 5.5 --- Methods --- p.35 / Chapter 5.5.1 --- Cloning of p16 and p15 Exon 1 Probes for Southern Analysis --- p.35 / Chapter 5.5.1.1 --- PCR Amplification of p16 and p15 exon1 Probes from Normal Blood DNA --- p.35 / Chapter 5.5.1.2 --- Recovery and Purification of p16 and p15 Exon 1 DNA Fragment --- p.36 / Chapter 5.5.1.3 --- Ligation --- p.37 / Chapter 5.5.1.4 --- Transformation --- p.37 / Chapter 5.5.1.5 --- Plating --- p.38 / Chapter 5.5.1.6 --- Screening of Recombinant Plasmid --- p.38 / Chapter 5.5.1.7 --- Confirmation of Cloned DNA by Sequencing --- p.42 / Chapter 5.5.2 --- DNA Extraction and Purification --- p.45 / Chapter 5.5.2.1 --- DNA Extraction from Bone Marrow Aspirate and Peripheral Blood --- p.45 / Chapter 5.5.2.2 --- Isolation of Plasmid DNA from Transformant Cutures --- p.46 / Chapter 5.5.2.3 --- Qualification and Quantification of DNA --- p.49 / Chapter 5.5.3 --- Detection of Hypermethylation by Southern Analysis --- p.50 / Chapter 5.5.3.1 --- Restriction Enzyme Digestion --- p.50 / Chapter 5.5.3.2 --- Agarose Gel Electrophoresis --- p.51 / Chapter 5.5.3.3 --- Southern Transfer --- p.51 / Chapter 5.5.3.4 --- Membrane Fixation --- p.51 / Chapter 5.5.3.5 --- Recovery and Purification of p16 and p15 Exon 1 Probes from Plasmid --- p.52 / Chapter 5.5.3.6 --- Probe Labeling --- p.54 / Chapter 5.5.3.7 --- Purification of Radioactive labeled DNA --- p.54 / Chapter 5.5.3.8 --- Southern Hybridization --- p.55 / Chapter 5.5.3.9 --- Post Hybridization --- p.55 / Chapter 5.5.3.10 --- Autoradiography --- p.56 / Chapter 5.5.4 --- Polymerase Chain Reaction-Single Strand Conformational Polymorphism Analysis (PCR-SSCP) --- p.56 / Chapter 5.5.4.1 --- 5'- end Radioactive Labeling of Primer --- p.56 / Chapter 5.5.4.2 --- Amplification of Target Sequence by PCR --- p.57 / Chapter 5.5.4.3 --- Non-denaturing Polyacrylamide Gel Electrophresis --- p.57 / Chapter 5.5.4.4 --- Direct DNA Sequence of PCR Products --- p.58 / Chapter 5.5.5 --- Prevention of Overall Contamination in PCR --- p.60 / Chapter 5.5.6 --- "Sensitivity, Specificity Controls" --- p.62 / Chapter Chapter6: --- Results --- p.64 / Chapter 6.1 --- Patient Characteristics --- p.65 / Chapter 6.1.1 --- General Patient Characteristics --- p.65 / Chapter 6.1.2 --- Clinical and Laboratory Features --- p.65 / Chapter 6.2 --- Southern Blot Analysis of p16/p15 and Rb --- p.79 / Chapter 6.2.1 --- Absence of Deletions or hypermethylationin Normal Controls --- p.79 / Chapter 6.2.2 --- Absence of Homozygous Deletions or Mutationsin p16/15 and Rb among all MM Patients --- p.79 / Chapter 6.2.3 --- Hypermethylation of p16 --- p.89 / Chapter 6.2.4 --- Hypermethylation of p15 --- p.92 / Chapter 6.3 --- Hypermethylation of p16/p15 and Clinico-pathologic Correlation --- p.94 / Chapter Chapter7: --- Discussion --- p.97 / Chapter 7.1 --- "Absence of Homozygous Deletions, Gene Rearrangements and Mutations in p16/p15 and Rb" --- p.98 / Chapter 7.2 --- Hypermethylation of p16/p15-An Alternative Way for Gene Inactivation --- p.100 / Chapter 7.2.1 --- Methylation of p15 Gene --- p.101 / Chapter 7.2.2 --- Methylation of 5'-CpG Island of p16/p15 and Lack of Gene Expression --- p.102 / Chapter 7.2.3 --- Comparison of Methylation Status of Primary Samples and Cell Lines in MM --- p.103 / Chapter 7.2.4 --- Progressive Gene Inactivation by Random Methylation Errors --- p.104 / Chapter 7.2.5 --- The Lack of Correlation of Tumor Contents Revealed by the Southern Analysis and Morphologic Assessment --- p.105 / Chapter 7.3 --- Knudson's Two-hit Model of Tumorigenesis --- p.106 / Chapter 7.4 --- Inverse Relationship of p16 and Rb --- p.107 / Chapter 7.5 --- Implications of Our Findings --- p.109 / Chapter 7.6 --- Future Studies --- p.109 / References --- p.111
2

DNA methylation analysis of human multiple myeloma.

January 2006 (has links)
Cheung Kin Fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 87-105). / Abstracts in English and Chinese. / Abstract (English version) --- p.i / Abstract (Chinese version) --- p.iii / Acknowledgments --- p.vi / Table of Contents --- p.v / List of Tables --- p.viii / List of Figures --- p.iv / List of Abbreviations --- p.xi / Chapter CHAPTER 1 --- GENERAL INTRODUCTION --- p.1 / Chapter CHAPTER 2 --- LITERATURE REVIEW --- p.3 / Chapter 2.1 --- Multiple myeloma --- p.3 / Chapter 2.2 --- Epidemiology of MM --- p.3 / Chapter 2.3 --- Risk factors --- p.4 / Chapter 2.4 --- Pathophysiology of MM --- p.5 / Chapter 2.5 --- Clinical presentations and diagnosis --- p.6 / Chapter 2.5.1 --- Diagnosis --- p.6 / Chapter 2.5.1.1 --- Laboratory testing of blood and urine --- p.6 / Chapter 2.5.1.2 --- Radiographic evaluations --- p.1 / Chapter 2.5.1.3 --- Bone marrow biopsy --- p.7 / Chapter 2.6 --- Staging and classification --- p.9 / Chapter 2.6.1 --- Staging --- p.9 / Chapter 2.6.2 --- Classification --- p.11 / Chapter 2.6.2.1 --- Monoclonal gammopathy of undetermined significance --- p.11 / Chapter 2.6.2.2 --- Asymptomatic MM --- p.12 / Chapter 2.6.2.3 --- Smouldering MM --- p.12 / Chapter 2.6.2.4 --- Indolent MM --- p.12 / Chapter 2.6.2.5 --- Symptomatic MM --- p.12 / Chapter 2.7 --- Treatment --- p.14 / Chapter 2.8 --- Epigenetics: DNA methylation --- p.15 / Chapter 2.9 --- Fundamental aspects of DNA methylation --- p.16 / Chapter 2.9.1 --- CpG islands --- p.16 / Chapter 2.9.2 --- Roles of DNA methylation --- p.16 / Chapter 2.9.3 --- Proposed mechanisms of transcriptional repression mediated by methylation --- p.18 / Chapter 2.10 --- Possible mechanisms to initiate aberrant DNA methylation --- p.21 / Chapter 2.11 --- DNA methylation in tumorigenesis --- p.22 / Chapter 2.11.1 --- Oncogenic point C → T mutation --- p.22 / Chapter 2.11.2 --- Global DNA hypomethylation --- p.23 / Chapter 2.11.3 --- Regional DNA hypermethylation --- p.23 / Chapter 2.12 --- Aberrant DNA methylation in MM --- p.25 / Chapter 2.12.1 --- Self-sufficiency in growth signals --- p.25 / Chapter 2.12.2 --- Evading apoptosis --- p.26 / Chapter 2.12.3 --- Insensitivity to antigrowth signals --- p.26 / Chapter 2.12.4 --- Tissue invasion and metastasis --- p.27 / Chapter 2.12.5 --- Infinite replicative potential --- p.28 / Chapter 2.12.6 --- Genome instability --- p.30 / Chapter 2.13 --- Methodologies of DNA methylation analysis --- p.32 / Chapter 2.13.1 --- Genome wide screening method: MS.AP-PCR --- p.32 / Chapter 2.13.2 --- Combined bisulfite restriction analysis --- p.34 / Chapter 2.13.3 --- Cloned bisulfite genomic sequencing --- p.36 / Chapter 2.13.4 --- Treatment with demethylating agent --- p.36 / Chapter CHAPTER 3 --- MATERIALS AND METHODS --- p.38 / Chapter 3.1 --- MM specimens --- p.38 / Chapter 3.1.1 --- MM samples --- p.38 / Chapter 3.1.2 --- MM cell lines --- p.38 / Chapter 3.2 --- Magnetic cell sorting of CD138-positive plasma cells --- p.39 / Chapter 3.3 --- Isolation of nuclear pellet from PB --- p.41 / Chapter 3.4 --- "DNA extraction from MM cell lines, MM plasma cells and PB" --- p.41 / Chapter 3.5 --- MS.AP-PCR --- p.42 / Chapter 3.5.1 --- Restriction enzyme digestion of genomic DNA --- p.42 / Chapter 3.5.2 --- Arbitrarily primed polymerase chain reaction --- p.42 / Chapter 3.5.3 --- Isolation of differentially methylated DNA fragments --- p.43 / Chapter 3.6 --- Cloning of differentially methylated DNA fragments --- p.46 / Chapter 3.6.1 --- TA cloning --- p.46 / Chapter 3.6.2 --- Heat shock transformation --- p.46 / Chapter 3.6.3 --- Screening of positive clones by PCR --- p.46 / Chapter 3.6.4 --- Alkaline lysis for plasmid DNA preparation --- p.47 / Chapter 3.7 --- MS.AP-PCR sequence analysis --- p.47 / Chapter 3.7.1 --- Nucleotide sequencing --- p.47 / Chapter 3.7.2 --- CpG islands analysis of differentially methylated sequences --- p.48 / Chapter 3.8 --- DNA methylation analysis --- p.48 / Chapter 3.8.1 --- Sodium bisulfite modification --- p.48 / Chapter 3.8.2 --- Combined bisulfite restriction analysis --- p.49 / Chapter 3.8.3 --- Cloned bisulfite genomic sequencing --- p.49 / Chapter 3.9 --- Gene expression analysis --- p.50 / Chapter 3.9.1 --- RNA extraction --- p.50 / Chapter 3.9.2 --- Reverse transcription PCR --- p.50 / Chapter 3.9.3 --- 5'-aza-2'-deoxycytidine treatment --- p.51 / Chapter CHAPTER 4 --- RESULTS --- p.53 / Chapter 4.1 --- Generation of DNA methylation patterns by MS.AP-PCR --- p.53 / Chapter 4.1.1. --- Global methylation content in MM samples and normal PB lymphocytes --- p.56 / Chapter 4.1.2. --- Differential methylation in MM --- p.56 / Chapter 4.2 --- UCSC BLAT analysis of differentially methylated DNA fragments --- p.60 / Chapter 4.3 --- Identification of two candidate genes with downregulated expression --- p.60 / Chapter 4.4 --- Zinc fingers and homeoboxes 2 (ZHX2) --- p.62 / Chapter 4.4.1 --- ZHX2 CpG islands BLAT search analysis --- p.62 / Chapter 4.4.2 --- Hypermethylation of ZHX2 in MM cell lines --- p.63 / Chapter 4.4.3 --- Downregulated expression of ZHX2 in methylated MM cell lines --- p.66 / Chapter 4.4.4 --- Restoration of ZHX2 expression by 5-Aza-dC treatment --- p.67 / Chapter 4.4.5 --- Unmethylation of ZHX2 in primary MM tumors --- p.68 / Chapter 4.5 --- Ring finger protein 180 (RNF180) --- p.69 / Chapter 4.5.1 --- RNF180 CpG islands BLAT search analysis --- p.69 / Chapter 4.5.2 --- Hypermethylation of RNF180 in MM cell lines --- p.70 / Chapter 4.5.3 --- Downregulated expression of RNF180 in methylated MM cell lines --- p.73 / Chapter 4.5.4 --- Restoration of RNF180 expression by 5-Aza-dC treatment --- p.74 / Chapter 4.5.5 --- Methylation of RNF180 in primary MM tumors --- p.75 / Chapter CHAPTER 5 --- DISCUSSION --- p.76 / Chapter 5.1 --- Importance of methylation in MM --- p.76 / Chapter 5.2 --- Genome-wide screening approach by MS.AP-PCR --- p.76 / Chapter 5.3 --- Sample selection in MS.AP-PCR --- p.78 / Chapter 5.4 --- Methylation patterns in MM --- p.79 / Chapter 5.5 --- Candidate genes selection strategies --- p.81 / Chapter 5.6 --- Zinc fingers and homeoboxes 2 --- p.81 / Chapter 5.7 --- Ring finger protein 180 --- p.83 / Chapter 5.8 --- Limitations --- p.84 / Chapter CHAPTER 6 --- CONCLUSION --- p.86 / REFERENCES --- p.87
3

Differential expression and roles of miR-1246 and miR-1290 in multiple myeloma cancer stem cell-like subpopulation. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Cheung, Hing Yau Coty. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 111-132). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese.
4

Molecular genetic studies of Chinese multiple myeloma. / CUHK electronic theses & dissertations collection

January 2005 (has links)
Cheng Suk Hang. / "February 2005." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 142-160) / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
5

A cytogenetic and epigenetic study on multiple myeloma in Chinese. / CUHK electronic theses & dissertations collection

January 2003 (has links)
Ng Heung-ling, Margaret. / "April 2003." / Thesis (M.D.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (p. 216-237). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web.
6

DNA microarray analysis in Chinese multiple myeloma.

January 2008 (has links)
Wong, Ling Yee. / Thesis submitted in: August 2007. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 110-127). / Abstracts in English and Chinese. / Thesis Abstract --- p.i / 論文摘要 --- p.iv / Acknowledgements --- p.vi / Abbreviations --- p.vii / Thesis Content --- p.xii / List of Figures --- p.xv / List of Tables --- p.xvii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter Chapter 2 --- Literature Review --- p.3 / Chapter 2.1. --- Multiple Myeloma (MM) --- p.3 / Chapter 2.1.1 --- Epidemiology --- p.4 / Chapter 2.1.2 --- Cause and Risk Factors --- p.5 / Chapter 2.1.3 --- Pathophysiology --- p.5 / Chapter 2.1.4 --- Diagnosis and Clinical Presentation --- p.6 / Chapter 2.1.5 --- Classification of Plasma Cell Disorders --- p.6 / Chapter 2.1.5.1 --- Monoclonal Gammopathy of Undetermined Significance (MGUS) --- p.6 / Chapter 2.1.5.2 --- Asymptomatic (Smouldering) MM --- p.7 / Chapter 2.1.5.3 --- Indolent MM --- p.7 / Chapter 2.1.5.4 --- Symptomatic MM --- p.8 / Chapter 2.1.6 --- Staging --- p.9 / Chapter 2.1.7 --- Treatment --- p.11 / Chapter 2.1.8 --- Molecular Abnormality --- p.12 / Chapter 2.2 --- DNA Microarray Analysis in MM --- p.13 / Chapter 2.2.1 --- MM Pathogenesis --- p.15 / Chapter 2.2.2 --- Molecular Classification of MM --- p.18 / Chapter 2.2.3 --- Anti-MM Drug Studies --- p.22 / Chapter 2.3 --- Cancer Treatment Response Prediction --- p.24 / Chapter 2.3.1 --- MP Treatment --- p.24 / Chapter 2.3.1.1 --- Melphalan --- p.25 / Chapter 2.3.1.2 --- Prednisone --- p.27 / Chapter 2.3.1.3 --- MP Treatment Response Prediction in MM --- p.29 / Chapter 2.3.2 --- Cancer Prognosis using DNA Microarray --- p.31 / Chapter Chapter 3 --- Materials and Methods --- p.36 / Chapter 3.1. --- Patient Specimens for Gene Expression Profiling and Quantitative Real-time PCR --- p.36 / Chapter 3.2. --- Magnetic Cell Sorting of CD138-positive Plasma Cells --- p.37 / Chapter 3.2.1 --- Density Gradient Centrifugation --- p.37 / Chapter 3.2.2 --- Positive Selection of CD138-positive Cells --- p.37 / Chapter 3.3 --- Generation of Gene Expression Profiles --- p.39 / Chapter 3.3.1 --- RNA Extraction --- p.39 / Chapter 3.3.2 --- RNA Assessment --- p.40 / Chapter 3.3.3 --- Synthesis and Purification of Double-strand cDNA --- p.40 / Chapter 3.3.4 --- In vitro Transcription (IVT) and Recovery of Biotin-labeled cRNA --- p.41 / Chapter 3.3.5 --- cRNA Fragmentation and Hybridization Reaction Mixture Preparation --- p.41 / Chapter 3.3.6 --- Hybridization --- p.42 / Chapter 3.3.7 --- Post-hybridization Wash --- p.42 / Chapter 3.3.8 --- Detection with Streptavidin-dye Conjugate --- p.43 / Chapter 3.3.9 --- Bioarray Scanning and Spot Signal Quantitation --- p.43 / Chapter 3.4 --- Microarray Data Analysis --- p.45 / Chapter 3.4.1 --- Normalization and Filtering --- p.45 / Chapter 3.4.2 --- Unsupervised Clustering Analysis --- p.45 / Chapter 3.4.3 --- Supervised Class Comparison Analysis --- p.46 / Chapter 3.5 --- Microarray Verification and Candidate Gene Validation --- p.47 / Chapter 3.5.1 --- RNA Extraction --- p.47 / Chapter 3.5.2 --- Reverse Transcription PCR --- p.47 / Chapter 3.5.3 --- Quantitative Real-time PCR --- p.48 / Chapter 3.6 --- Predictive Value Calculation --- p.49 / Chapter 3.7 --- Experimental Flow --- p.49 / Chapter Chapter 4 --- Results --- p.53 / Chapter 4.1 --- Gene Expression Profiling of Chinese MM --- p.53 / Chapter 4.1.1 --- Unsupervised Clustering Analysis --- p.53 / Chapter 4.1.1.1 --- Hierarchical Clustering --- p.53 / Chapter 4.1.1.2 --- Principal Component Analysis (PCA) --- p.54 / Chapter 4.1.2 --- Identification of Statistically Differentially Expressed Genes --- p.58 / Chapter 4.1.2.1 --- Two-Sample t-statistics --- p.58 / Chapter 4.1.2.2 --- Significance Analysis of Microarrays (SAM) --- p.58 / Chapter 4.1.2.3 --- Microarray Verification --- p.66 / Chapter 4.2 --- Development of MP Treatment Response Biomarker in MM --- p.70 / Chapter 4.2.1 --- Unsupervised Clustering Analysis --- p.70 / Chapter 4.2.1.1 --- Hierarchical Clustering --- p.70 / Chapter 4.2.1.2 --- PCA --- p.70 / Chapter 4.2.2 --- Identification of Statistically Differentially Expressed Genes --- p.74 / Chapter 4.2.2.1 --- Two sample t-statistics --- p.74 / Chapter 4.2.2.2 --- SAM --- p.74 / Chapter 4.2.3 --- Verification of Candidate Gene CYB5D1 --- p.76 / Chapter Chapter 5 --- Discussion --- p.79 / Chapter 5.1 --- Global Gene Expression Profiling: DNA Microarray --- p.79 / Chapter 5.2 --- Microarray Data Normalization and Gene Filtering --- p.81 / Chapter 5.3 --- Microarray Data Analysis --- p.83 / Chapter 5.3.1 --- Unsupervised Clustering Analysis --- p.83 / Chapter 5.3.1.1 --- Hierarchical Clustering --- p.83 / Chapter 5.3.1.2 --- PCA --- p.85 / Chapter 5.3.2 --- Identification of Statistically Differentially Expressed Genes --- p.86 / Chapter 5.4 --- Verification of Candidate Genes by Quantitative Real-time PCR --- p.89 / Chapter 5.5 --- Gene Expression Profiling of Chinese MM --- p.90 / Chapter 5.5.1 --- Comparison of Gene Expression Patterns of MM and Normal Plasma Cells --- p.90 / Chapter 5.5.2 --- Differentially Expressed Genes between MM and Normal Plasma Cells..… --- p.91 / Chapter 5.5.2.1 --- Common Differentially Expressed Genes with Previous Studies --- p.94 / Chapter 5.5.2.2 --- Potential Tumor Suppressor Genes in Differentially Expressed Genes..… --- p.96 / Chapter 5.5.2.3 --- Verified Differentially Expressed Genes --- p.98 / Chapter 5.5.3 --- Future Studies --- p.101 / Chapter 5.6 --- Development of MP Treatment Response Biomarker in MM --- p.103 / Chapter 5.6.1 --- Comparison of Gene Expression Patterns of MP Good Responders (GR) and Poor Responders (PR) --- p.103 / Chapter 5.6.2 --- Differentially Expressed Gene between MP GR and PR: CYB5D1 --- p.104 / Chapter 5.6.3 --- Possible Role of CYB5D1 in MP Resistance in MM Cells --- p.104 / Chapter 5.6.4 --- Potential Clinical Application of CYB5D1 in MP Treatment Response Prediction in MM --- p.106 / Chapter 5.6.5 --- Future Studies --- p.106 / Chapter Chapter 6 --- Conclusion --- p.108 / Chapter 6.1 --- Gene Expression Profiling of Chinese MM --- p.108 / Chapter 6.2 --- Development of MP Treatment Response Biomarker in MM --- p.108 / References --- p.110 / Appendix --- p.128

Page generated in 0.08 seconds