• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fonctions booléennes, courbes algébriques et multiplication complexe / Boolean functions, algebraic curves and complex multiplication

Flori, Jean-Pierre 03 February 2012 (has links)
La première partie de cette thèse est dévolue à l’étude d’une conjecture combinatoire dont la validité assure l’existence de familles infinies de fonctions booléennes dotées de propriétés cryptographiques intéressantes. Quoique particulièrement innocente au premier abord, la validité de cette conjecture reste un problème ouvert. Néanmoins, l’auteur espère que les résultats théoriques et expérimentaux présentés ici permettront au lecteur d’acquérir un tant soit peu de familiarité avec la conjecture. Dans la seconde partie de ce manuscrit, des liens entre fonctions (hyper-)courbes — une classe particulière de fonctions booléennes —, sommes exponentielles et courbes (hyper)elliptiques sont présentés. Les fonctions (hyper-)courbes sont en effet particulièrement difficiles à classifier et à construire. L’étude des liens mentionnés ci-dessus permet de résoudre de façon élégante des problèmes d’ordre tout aussi bien théorique que pratique. La troisième et dernière partie pousse plus avant l’étude des courbes (hyper)elliptiques d’un point de vue sensiblement différent. De nombreuses constructions cryptographiques reposent en effet sur l’utilisation de classes particulières de telles courbes qui ne peuvent être construites en utilisant des méthodes classiques. Cependant, la méthode CM permet de donner une réponse positive à ce problème. Les polynômes de classes sont des objets fondamentaux de cette méthode. Habituellement, leur construction n’est envisagée que pour des ordres maximaux. La modeste contribution de l’auteur est d’expliciter comment une telle construction — la méthode analytique complexe — s’étend aux ordres non-maximaux. / The first part is devoted to the study of a combinatorial conjecture whose validity entails the existence of infinite classes of Boolean functions with good cryptographic properties. Although the conjecture seems quite innocuous, its validity remains an open question. Nonetheless, the author sincerely hopes that the theoretical and experimental results presented here will give the reader a good insight into the conjecture. In the second part, some connections between (hyper-)bent functions — a subclass of Boolean functions —, exponential sums and point counting on (hyper)elliptic curves are presented. Bent functions and hyper-bent functions are known to be difficult to classify and to build explicitly. However, exploring the links between these different worlds makes possible to give beautiful answers to theoretical questions and to design efficient algorithms addressing practical problems. The third and last part investigates the theory of (hyper)elliptic curves in a different direction. Several constructions in cryptography indeed rely on the use of highly specific classes of such curves which can not be constructed by classical means. Nevertheless, the so-called “complex multiplication” method solves some of these problems. Class polynomials are fundamental objects for that method, but their construction is usually considered only for maximal orders. The modest contribution of the author is to clarify how a specific flavor of their construction — the complex analytic method — extends to non-maximal orders.
2

Fonctions booléennes, courbes algébriques et multiplication complexe

Flori, Jean-Pierre 03 February 2012 (has links) (PDF)
La première partie de cette thèse est dévolue à l'étude d'une conjecture combinatoire dont la validité assure l'existence de familles infinies de fonctions booléennes dotées de propriétés cryptographiques intéressantes. Quoique particulièrement innocente au premier abord, la validité de cette conjecture reste un problème ouvert. Néanmoins, l'auteur espère que les résultats théoriques et expérimentaux présentés ici permettront au lecteur d'acquérir un tant soit peu de familiarité avec la conjecture. Dans la seconde partie de ce manuscrit, des liens entre fonctions (hyper-)courbes -- une classe particulière de fonctions booléennes --, sommes exponentielles et courbes (hyper)elliptiques sont présentés. Les fonctions (hyper-)courbes sont en effet particulièrement difficiles à classifier et à construire. L'étude des liens mentionnés ci-dessus permet de résoudre de façon élégante des problèmes d'ordre tout aussi bien théorique que pratique. La troisième et dernière partie pousse plus avant l'étude des courbes (hyper)elliptiques d'un point de vue sensiblement différent. De nombreuses constructions cryptographiques reposent en effet sur l'utilisation de classes particulières de telles courbes qui ne peuvent être construites en utilisant des méthodes classiques. Cependant, la méthode CM permet de donner une réponse positive à ce problème. Les polynômes de classes sont des objets fondamentaux de cette méthode. Habituellement, leur construction n'est envisagée que pour des ordres maximaux. La modeste contribution de l'auteur est d'expliciter comment une telle construction -- la méthode analytique complexe -- s'étend aux ordres non-maximaux.
3

Courbes Algébriques et Cryptologie

Enge, Andreas 07 December 2007 (has links) (PDF)
-
4

Valeurs exceptionnelles de fonctions transcendantes

Desrousseaux, Pierre-Antoine Cohen, Paula. January 2002 (has links)
Thèse de doctorat : Mathématiques : Lille 1 : 2002. / N° d'ordre (Lille) : 3112. Bibliogr. p. 101-103.
5

Calcul effectif de points spéciaux / Effective computation of special points

Riffaut, Antonin 09 July 2018 (has links)
À partir du théorème d’André en 1998, qui est la première contribution non triviale à la conjecture de André-Oort sur les sous-variétés spéciales des variétés de Shimura, la principale problématique de cette thèse est d’étudier les propriétés diophantiennes des modules singuliers, en caractérisant les points de multiplication complexe (x; y) satisfaisant un type d’équation donné de la forme F(x; y) = 0, pour un polynôme irréductible F(X; Y ) à coefficients complexes. Plus spécifiquement, nous traitons deux équations impliquant des puissances de modules singuliers. D’une part, nous montrons que deux modules singuliers x; y tels que les nombres 1, xm et yn soient linéairement dépendants sur Q, pour des entiers strictement positifs m; n, doivent être de degré au plus 2, ce qui généralise un résultat d’Allombert, Bilu et Pizarro-Madariaga, qui ont étudié les points de multiplication complexe appartenant aux droites de C2 définies sur Q. D’autre part, nous montrons que, sauf cas “évidents”, le produit de n’importe quelles puissances entières de deux modules singuliers ne peut être un nombre rationnel non nul, ce qui généralise un résultat de Bilu, Luca et Pizarro- Madariaga, qui ont ont étudié les points de multiplication complexe appartenant aux hyperboles xy = A, où A 2 Qx. Les méthodes que nous développons reposent en grande partie sur les propriétés des corps de classes engendrés par les modules singuliers, les estimations de la fonction j-invariant et les estimations des formes linéaires logarithmiques. Nous déterminons également les corps engendrés par les sommes et les produits de deux modules singuliers x et y : nous montrons que le corps Q(x; y) est engendré par la somme x + y, à moins que x et y soient conjugués sur Q, auquel cas x + y engendre un sous-corps de degré au plus 2 ; le même résultat demeure pour le produit xy. Nos preuves sont assistées par le logiciel PARI/GP, que nous utilisons pour procéder à des vérifications dans des cas particuliers explicites. / Starting for André’s Theorem in 1998, which is the first non-trivial contribution to the celebrated André-Oort conjecture on the special subvarieties of Shimura varieties, the main purpose of this thesis is to study Diophantine properties of singular moduli, by characterizing CM-points (x; y) satisfying a given type of equation of the form F(x; y) = 0, for an irreducible polynomial F(X; Y ) with complex coefficients. More specifically, we treat two different equations involving powers of singular moduli. On the one hand, we show that two distinct singular moduli x; y such that the numbers 1, xm and yn are linearly dependent over Q, for some positive integers m; n, must be of degree at most 2. This partially generalizes a result of Allombert, Bilu and Pizarro-Madariaga, who studied CM-points belonging to straight lines in C2 defined over Q. On the other hand, we show that, with “obvious” exceptions, the product of any two powers of singular moduli cannot be a non-zero rational number. This generalizes a result of Bilu, Luca and Pizarro-Madariaga, who studied CM-points belonging to hyperbolas xy = A, where A 2 Qx. The methods we develop lie mainly on the properties of ring class fields generated by singular moduli, on estimations of the j-function and on estimations of linear forms in logarithms. We also determine fields generated by sums and products of two singular moduli x and y : we show that the field Q(x; y) is generated by the sum x + y, unless x and y are conjugate over Q, in which case x + y generate a subfield of degree at most 2 ; the same holds for the product xy. Our proofs are assisted by the PARI/GP package, which we use to proceed to verifications in particular explicit cases.
6

Propriété de Bogomolov pour les modules de Drinfeld à multiplications complexes

Bauchère, Hugues 16 September 2013 (has links) (PDF)
Notons A:=Fq[T] et k:=Fq(T). Soient φ un A-module de Drinfeld défini sur la clôture algébrique de k et h sa hauteur canonique. Soient K/k une extension finie et L/K une extension galoisienne infinie. Par analogie avec la terminologie utilisée par E. Bombieri et U. Zannier, on dit que L a la propriété (B,φ) s'il existe une constante strictement positive qui minore h sur L privé des points de torsion de φ. S. David et A. Pacheco ont montré que pour tout module de Drinfeld φ, la clôture abélienne de K a la propriété (B,φ). Dans cette thèse nous généralisons, dans le cadre des modules de Drinfeld à multiplications complexes, ce résultat.
7

The CM class number one problem for curves / Le problème du nombre de classes 1 pour les courbes à multiplication complexe

Kilicer, Pinar 05 July 2016 (has links)
Soit E une courbe elliptique sur C ayant multiplication complexe (CM) par l’ordre maximal OK d’un corps quadratique imaginaire K. Le premier théorème principal de la multiplication complexe affirme que le corps K(j(E)), obtenu en adjoignant à K le j-invariant de E, est égal au corps de classes de Hilbert de K, confer Cox [11, Theorem 11.1]. Notons que lorsque E est définie sur Q, le corps de classes de Hilbert K(j(E)) est égal à K et le groupe des classes ClK est trivial. Se pose alors le problème de déterminer les corps quadratiques totalement imaginaires K pour lesquels la courbe elliptique à multiplication complexe par OK correspondante est définie sur Q. De façon équivalente, il s’agit de trouver tous les corps quadratiques imaginaires dont le groupe des classes est trivial. Ce problème est connu sous le nom de problème du nombre de classes 1 de Gauss et a été résolu par Heegner en 1952 [16], Baker en 1967 [2] et Stark en 1967 [41]; les corps quadratiques imaginaires dont le groupe des classes est trivial sont les corps Q(racine carrée−d), où d e {3, 4, 7, 8, 11, 19, 43, 67, 163}. Dans les années ’50, Shimura et Taniyama [39] ont généralisé le premier théorème principal de la multiplication complexe aux variétés abéliennes. On dit qu’une variété abélienne A de dimension g a multiplication complexe si son anneau d’endomorphismes contient un ordre d’un corps CM de degré 2g. Soit K un corps CM de degré 2g et d’ordre maximal OK et soit un type CM de K. Soit A une variété abélienne complexe simplement polarisée de dimension g ayant multiplication complexe par OK. Le premier théorème principal de la multiplication complexe dans ce cadre affirme que le corps de classes H du corps du modules M de la variété abélienne simplement polarisée A est une extension non ramifiée du corps reflex Kr de K. De plus, le corps des classes H correspond au groupe d’idéaux I0(.r) (voir page 17) qui ne dépend que de (K,.), confer Théorème 1.5.6. Notons que le premier théorème de la multiplication complexe implique que si la variété abélienne polarisée A est définie sur Kr, le groupe des classes CM IKr/I0(.r) est trivial. Comme dans le cas des courbes elliptiques, on peut alors chercher à déterminer les couples CM (K,.) pour lesquels les variétés abéliennes correspondantes sont définies sur Kr. De fa¸con équivalente, il s’agit de déterminer les couples CM (K,.) dont le groupe des classes CM, IKr/I0(.r), est trivial. Dans cette thèse, on résout ce problème dans le cas des corps CM quartiques imaginaires (voir Chapitre 2) ainsi que dans celui des corps CM sextiques contenant un corps quadratique imaginaire (voir Chapitre 3). Enfin, on peut se demander quels sont les corps CM pour lesquels la variété abélienne simple à multiplication complexe admet Q comme corps de module. Murabayashi et Umegaki [31] ont déterminé les corps quartiques CM correspondant aux surfaces abéliennes simples à multiplication complexe de corps du module Q. Dans le chapitre 4, on détermine les corps CM sextiques correspondant aux variétés abéliennes simples à multiplication complexe de dimension 3 de corps du module Q. / Let E be an elliptic curve over C with complex multiplication (CM) by the maximal order OK of an imaginary quadratic field K. The first main theorem of complex multiplication for elliptic curves then states that the field extension K(j(E)), obtained by adjoining the j-invariant of E to K, is equal to the Hilbert class field of K, see Theorem 11.1 in Cox [11]. Note that if E is defined over Q, then the Hilbert class field K(j(E)) is equal to K, which implies that the class group ClK is trivial. We can ask for which imaginary quadratic fields K the corresponding elliptic curve with CM by OK is defined over Q. This is equivalent to asking to find all imaginary quadratic fields with trivial class group ClK. This problem is known as Gauss’ class number one problem, which was solved by Heegner in 1952 [16], Baker in 1967 [2], and Stark in 1967 [41]. The imaginary quadratic fields with trivial class group are the fields Q(V−d) with d E {3, 4, 7, 8, 11, 19, 43, 67, 163}. In the 1950’s, Shimura and Taniyama [39] generalized the first main theorem of CM for elliptic curves to abelian varieties. We say that an abelian variety A of dimension g has CM if the endomorphism ring of A contains an order of a CM field of degree 2g. Let K be a CM field of degree 2g with maximal order OK, and let K be a CM type of K. Let A be a polarized simple abelian variety over C of dimension g that has CM by OK. Then the first main theorem of CM says that the field of moduli M of the polarized simple abelian variety A gives an unramified class field H over the reflex field Kr of K. Moreover, the class field H corresponds to the ideal group I0(?r) (see page 17), which only depends on (K,?), see Theorem 1.5.6. Note that the first main theorem of CM implies that if the polarized abelian variety A is defined over Kr, then the CM class group IKr/I0(?r) is trivial. As in the elliptic curve case, we can ask for which CM pairs (K,?) the corresponding CM abelian varieties are defined over Kr. Equivalently, we can ask for which CM pairs (K,?) the CM class group IKr/I0(?r) is trivial. In this thesis we give an answer to this problem for quartic CM fields (see Chapter 2), and for sextic CM fields containing an imaginary quadratic field (see Chapter 3). Furthermore, we can ask for which CM fields the corresponding simple CM abelian varieties have field of moduli Q. Murabayashi and Umegak [31] determined the quartic CM fields that correspond to a simple CM abelian surface with field of moduli Q. In Chapter 4, we determine the sextic CM fields that correspond to a simple CM abelian threefold with field of moduli Q.
8

Intersection arithmétique et problème de Lehmer elliptique / Lehmer's problem and arithmetic intersection

Winckler, Bruno 20 November 2015 (has links)
Cette thèse étudie le problème de minoration de la hauteur canonique sur les courbeselliptiques. Son résultat diophantien principal utilise des méthodes d’intersectionarithmétique pour retrouver un résultat de Laurent, qui démontrait la conjecturede Lehmer pour les courbes elliptiques à multiplications complexes à un exposant" près, tout en explicitant complètement sa dépendance en divers paramètres liésà la courbe elliptique ; une telle démarche peut être motivée par la conjecture deLang, qui présage une minoration possible de la hauteur canonique proportionnelle,essentiellement, à la hauteur de Faltings de la courbe.Notre dissertation commence toutefois par une partie dédiée à l’explicitation duthéorème de densité de Chebotarev, qui reprend les grandes lignes d’un travail deLagarias et Odlyzko, et s’avère être cruciale dans notre approche du problème deLehmer elliptique. On obtient également des majorations des zéros de Siegel et de lanorme du plus petit idéal premier entrant en jeu dans le théorème de Chebotarev. / In this thesis we consider the problem of lower bounds for the canonical height onelliptic curves, aiming for the conjecture of Lehmer. Our main diophantine result isan explicit version of a theorem of Laurent (who proved this conjecture for ellipticcurves with CM up to a " exponent) using arithmetic intersection, enlightening thedependence with parameters linked to the elliptic curve ; such a result can be motivatedby the conjecture of Lang, hoping for a lower bound proportional to, roughly,the Faltings height of the curve.Nevertheless, our dissertation begins with a part dedicated to a completely explicitversion of the density theorem of Chebotarev, along the lines of a previous workdue to Lagarias and Odlyzko, which will be crucial to investigate the elliptic Lehmerproblem. We also obtain upper bounds for Siegel zeros, and for the smallest primeideal whose Frobenius is in a fixed conjugacy class.

Page generated in 0.1272 seconds