• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Minoration de la hauteur normalisée en petite codimension

Pontreau, Corentin 09 December 2005 (has links) (PDF)
Le point de départ de cette thèse est l'étude du problème de Lehmer en dimension supérieure à deux. Le but ici est de trouver dans le cadre plus général du groupe multiplicatif $G_m^n$, des bornes inférieures pour la hauteur de sous-variétés de petite dimension, ou plutôt de petite codimension. <br /><br />Dans un premier temps nous regroupons un certain nombre de résultats plus ou moins connus sur les sous-groupes algébriques et le comportement des sous-variétés après multiplication par un entier dans $G_m^n$. Par la suite, nous montrons des minorations de type arithmétique et géométrique pour les sous-variétés de codimension 1 et 2 de $G_m^2$ et $G_m^3$ respectivement. A la différence de ce qui est fait dans les travaux antérieurs de F. Amoroso et S. David, concernant les sous-variétés de codimension différente de 1, nous n'utilisons pas de descente finale pour conclure nos preuves, mais un nouvel argument géométrique. Ceci simplifie grandement la démarche, et apporte de réelles améliorations quantitatives dans ces cas étudiés.<br /><br />Nous nous intéressons enfin à l'étude des petits points d'une sous-variété. Etant donnée une surface $V$ de $G_m^3$ géométriquement irréductible, nous montrons qu'en dehors d'un nombre fini de translatés de tores exceptionnels inclus dans $V$, dont nous majorons la somme des degrés, tous les points sont de hauteur minorée par une quantité quasi-optimale $\epsilon(V)>0$, essentiellement linéaire en l'inverse du degré de $V$, chose que l'on ne sait pas faire dans le cas général.
2

Minoration de la hauteur de Néron-Tate pour les points et les sous-variétés : variations sur le problème de Lehmer

Ratazzi, Nicolas 25 May 2004 (has links) (PDF)
Cette thèse est consacrée aux problèmes de minorations de hauteur normalisée des points et des sous-variétés non de torsion. Le chapitre 1 est un chapitre de rappels, les autres sont originaux. On prouve au chapitre 2 un résultat de densité de petits points. Ceci nous permet d'obtenir, pour les sous-variétés de variétés abéliennes de type C.M., une minoration en fonction du degré de la sous-variété, optimale aux puissances de log du degré près. On montre en toute généralité qu'une ``bonne minoration'' de la hauteur des points entraîne une minoration analogue de la hauteur des sous-variétés. Ceci nous permet en particulier de prouver que, sur les variétés abéliennes, le problème de Lehmer pour les points est équivalent au problème de Lehmer pour les sous-variétés. Le chapitre 3 est un raffinement du précédent dans le cas des hypersurfaces. La preuve, qui passe par l'introduction d'une fonction auxiliaire, suit le schéma classique des preuves de transcendance. En utilisant l'inégalité des pentes, due à Bost, on retrouve ensuite au chapitre 4 le célèbre résultat de Dobrowolski concernant le problème originel de Lehmer sur la minoration de la hauteur des entiers algébriques. Le chapitre 5 étend un résultat de Amoroso et Zannier au cas des courbes elliptiques C.M. : on obtient une minoration du type Lehmer, mais où le degré de l'extension engendrée par le point P sur K est remplacé par le degré de l'extension engendrée par le point P sur la clôture abélienne de K. Ceci nous permet de simplifier la preuve d'un résultat de Viada. Enfin au chapitre 6, on fait le lien entre diverses conjectures relatives au problème de Lehmer sur les variétés abéliennes.
3

Autour du problème de Lehmer relatif dans un tore

Delsinne, Emmanuel 14 December 2007 (has links) (PDF)
Le problème de Lehmer consiste à minorer la hauteur de Weil d'un nombre algébrique en fonction de son degré sur Q. Si la question originelle de Lehmer reste aujourd'hui sans réponse, la conjecture optimale correspondante a été démontrée à un epsilon près. Par ailleurs, ce problème admet plusieurs généralisations. D'une part, on peut formuler le même type de conjecture en remplaçant le corps des rationnels par une extension abélienne d'un corps de nombres. D'autre part, on peut généraliser ces énoncés en dimension supérieure. Il s'agit alors de minorer la hauteur normalisée d'un point ou d'une sous-variété d'un tore ; dans ce cas, on substitue au degré un invariant plus fin : l'indice d'obstruction. Il est ensuite naturel de chercher à combiner ces deux généralisations : c'est le problème de Lehmer relatif dans un tore.<br /><br />Dans cette thèse, nous considérons tout d'abord le problème de Lehmer relatif unidimensionnel. Nous donnons une minoration pour la hauteur d'un nombre algébrique en fonction de son degré sur une extension abélienne d'un corps de nombres. Il s'agit d'une amélioration d'un théorème d'Amoroso et Zannier, obtenue à l'aide d'une démonstration techniquement plus simple. De plus, nous explicitons la dépendance de la borne inférieure en le corps de base. Puis nous abordons le problème de Lehmer relatif en dimension supérieure et minorons la hauteur d'une hypersurface en fonction de son indice d'obstruction sur une extension abélienne de Q. Enfin, nous obtenons un résultat analogue pour un point, sous réserve que celui-ci satisfasse une hypothèse technique. Nous montrons ainsi les conjectures les plus fines à un epsilon près.
4

Intersection arithmétique et problème de Lehmer elliptique / Lehmer's problem and arithmetic intersection

Winckler, Bruno 20 November 2015 (has links)
Cette thèse étudie le problème de minoration de la hauteur canonique sur les courbeselliptiques. Son résultat diophantien principal utilise des méthodes d’intersectionarithmétique pour retrouver un résultat de Laurent, qui démontrait la conjecturede Lehmer pour les courbes elliptiques à multiplications complexes à un exposant" près, tout en explicitant complètement sa dépendance en divers paramètres liésà la courbe elliptique ; une telle démarche peut être motivée par la conjecture deLang, qui présage une minoration possible de la hauteur canonique proportionnelle,essentiellement, à la hauteur de Faltings de la courbe.Notre dissertation commence toutefois par une partie dédiée à l’explicitation duthéorème de densité de Chebotarev, qui reprend les grandes lignes d’un travail deLagarias et Odlyzko, et s’avère être cruciale dans notre approche du problème deLehmer elliptique. On obtient également des majorations des zéros de Siegel et de lanorme du plus petit idéal premier entrant en jeu dans le théorème de Chebotarev. / In this thesis we consider the problem of lower bounds for the canonical height onelliptic curves, aiming for the conjecture of Lehmer. Our main diophantine result isan explicit version of a theorem of Laurent (who proved this conjecture for ellipticcurves with CM up to a " exponent) using arithmetic intersection, enlightening thedependence with parameters linked to the elliptic curve ; such a result can be motivatedby the conjecture of Lang, hoping for a lower bound proportional to, roughly,the Faltings height of the curve.Nevertheless, our dissertation begins with a part dedicated to a completely explicitversion of the density theorem of Chebotarev, along the lines of a previous workdue to Lagarias and Odlyzko, which will be crucial to investigate the elliptic Lehmerproblem. We also obtain upper bounds for Siegel zeros, and for the smallest primeideal whose Frobenius is in a fixed conjugacy class.

Page generated in 0.0345 seconds