Spelling suggestions: "subject:"géométrie diophantine"" "subject:"géométrie kantienne""
1 |
Effectivité dans le théorème d'irréductibilité de HilbertWalkowiak, Yann 17 December 2004 (has links) (PDF)
Le théorème d'irréductibilité de Hilbert assure l'existence d'une spécialisation conservant l'irréductibilité d'un polynôme à plusieurs variables et à coefficients rationnels. Des versions effectives ont été données par P. Dèbes (1993) puis par U. Zannier et A. Schinzel (1995). Nous proposons ici diverses tentatives d'améliorer ces résultats effectifs : méthode de Dörge, méthode des congruences inspirée par un article de M. Fried et enfin une utilisation des résultats récents de R. Heath-Brown sur les points entiers d'une courbe algébrique. Cette dernière voie va nous permettre d'améliorer significativement les résultats connus. On finira par une application à la recherche d'un algorithme polynomial pour la factorisation d'un polynôme à deux indéterminées.
|
2 |
Problème de Bogomolov sur les variétés abéliennesGalateau, Aurélien 13 December 2007 (has links) (PDF)
Cette thèse est consacrée à l'étude de la hauteur sur les variétés abéliennes, et plus précisément à la répartition des petits points dans les sous-variétés algébriques de variétés abéliennes. On a cherché à établir une version quantitative de la propriété de Bogomolov en minorant le minimum essentiel des sous-variétés algébriques de variétés abéliennes (sauf celles incluses dans un translaté de sous-variété abélienne stricte).
|
3 |
Autour du problème de Lehmer relatif dans un toreDelsinne, Emmanuel 14 December 2007 (has links) (PDF)
Le problème de Lehmer consiste à minorer la hauteur de Weil d'un nombre algébrique en fonction de son degré sur Q. Si la question originelle de Lehmer reste aujourd'hui sans réponse, la conjecture optimale correspondante a été démontrée à un epsilon près. Par ailleurs, ce problème admet plusieurs généralisations. D'une part, on peut formuler le même type de conjecture en remplaçant le corps des rationnels par une extension abélienne d'un corps de nombres. D'autre part, on peut généraliser ces énoncés en dimension supérieure. Il s'agit alors de minorer la hauteur normalisée d'un point ou d'une sous-variété d'un tore ; dans ce cas, on substitue au degré un invariant plus fin : l'indice d'obstruction. Il est ensuite naturel de chercher à combiner ces deux généralisations : c'est le problème de Lehmer relatif dans un tore.<br /><br />Dans cette thèse, nous considérons tout d'abord le problème de Lehmer relatif unidimensionnel. Nous donnons une minoration pour la hauteur d'un nombre algébrique en fonction de son degré sur une extension abélienne d'un corps de nombres. Il s'agit d'une amélioration d'un théorème d'Amoroso et Zannier, obtenue à l'aide d'une démonstration techniquement plus simple. De plus, nous explicitons la dépendance de la borne inférieure en le corps de base. Puis nous abordons le problème de Lehmer relatif en dimension supérieure et minorons la hauteur d'une hypersurface en fonction de son indice d'obstruction sur une extension abélienne de Q. Enfin, nous obtenons un résultat analogue pour un point, sous réserve que celui-ci satisfasse une hypothèse technique. Nous montrons ainsi les conjectures les plus fines à un epsilon près.
|
4 |
Approximation diophantienne sur les variétés projectives et les groupes algébriques commutatifs / Diophantine approximation on projective varieties and on commutative algebraic groupsBallaÿ, François 25 October 2017 (has links)
Dans cette thèse, nous appliquons des outils issus de la théorie d’Arakelov à l’étude de problèmes de géométrie diophantienne. Une notion centrale dans notre étude est la théorie des pentes des fibrés vectoriels hermitiens, introduite par Bost dans les années 90. Nous travaillons plus précisément avec sa généralisation dans le cadre adélique, inspirée par Zhang et développée par Gaudron. Ce mémoire s’articule autour de deux axes principaux. Le premier consiste en l’étude d’un remarquable théorème de géométrie diophantienne dû à Faltings etWüstholz, qui généralise le théorème du sous-espace de Schmidt. Nous commencerons par retranscrire la démonstration de Faltings et Wüstholz dans le langage de la théorie des pentes. Dans un second temps, nous établirons des variantes effectives de ce théorème, que nous appliquerons pour démontrer une généralisation effective du théorème de Liouville valable pour les points fermés d’une variété projective fixée. Ce résultat fournit en particulier une majoration explicite de la hauteur des points satisfaisant une inégalité analogue à celle du théorème de Liouville classique. Dans la seconde partie de cette thèse, nous établirons de nouvelles mesures d’indépendance linéaire de logarithmes dans un groupe algébrique commutatif, dans le cas dit rationnel.Notre approche utilise les arguments de la méthode de Baker revisitée par Philippon et Waldschmidt, combinés avec des outils de la théorie des pentes. Nous y intégrons un nouvel argument, inspiré par des travaux antérieurs de Bertrand et Philippon, nous permettant de contourner les difficultés introduites par le cas périodique. Cette approche évite le recours à une extrapolation sur les dérivations à la manière de Philippon et Waldschmidt. Nous parvenons ainsi à supprimer une hypothèse technique contraignante dans plusieurs théorèmes de Gaudron, tout en précisant les mesures obtenues. / In this thesis, we study diophantine geometry problems on projective varieties and commutative algebraic groups, by means of tools from Arakelov theory. A central notion in this work is the slope theory for hermitian vector bundles, introduced by Bost in the 1990s. More precisely, we work with its generalization in an adelic setting, inspired by Zhang and developed by Gaudron. This dissertation contains two major lines. The first one is devoted to the study of a remarkable theorem due to Faltings and Wüstholz, which generalizes Schmidt’s subspace theorem. We first reformulate the proof of Faltings and Wüstholz using the formalism of adelic vector bundles and the adelic slope method. We then establish some effective variants of the theorem, and we deduce an effective generalization of Liouville’s theorem for closed points on a projective variety defined over a number field. In particular, we give an explicit upper bound for the height of the points satisying a Liouville-type inequality. In the second part, we establish new measures of linear independence of logarithms over a commutative algebraic group. We focus our study on the rational case. Our approach combines Baker’s method (revisited by Philippon and Waldschmidt) with arguments from the slope theory. More importantly, we introduce a new argument to deal with the periodic case, inspired by previous works of Bertrand and Philippon. This method does not require the use of an extrapolation on derivations in the sense of Philippon-Waldschmidt. In this way, we are able to remove an important hypothesis in several theorems of Gaudron establishing lower bounds for linear forms in logarithms.
|
5 |
Autour de la conjecture de Zilber-Pink pour les Variétés de Shimura / Around the Zilber-Pink Conjecture for Shimura VarietiesRen, Jinbo 06 July 2018 (has links)
Dans cette thèse, nous nous intéressons à l'étude de l'arithmétique et de la géométrie des variétés de Shimura. Cette thèse s'est essentiellement organisée autour de trois volets. Dans la première partie, on étudie certaines applications de la théorie des modèles en théorie des nombres. En 2014, Pila et Tsimerman ont donné une preuve de la conjecture d'Ax-Schanuel pour la fonction j et, avec Mok, ont récemment annoncé une preuve de sa généralisation à toute variété de Shimura. Nous nous référons à cette généralisation comme à la conjecture d'Ax-Schanuel hyperbolique. Dans ce projet, nous cherchons à généraliser les idées de Habegger et Pila pour montrer que, sous un certain nombre d'hypothèses arithmétiques, la conjecture d'Ax-Schanuel hyperbolique implique, par une extension de la stratégie de Pila-Zannier, la conjecture de Zilber-Pink pour les variétés de Shimura. Nous concluons en vérifiant toutes ces hypothèses arithmétiques à l'exception d'une seule dans le cas d'un produit de courbes modulaires, en admettant la conjecture dite des grandes orbites de Galois. Il s'agit d'un travail en commun avec Christopher Daw. La seconde partie est consacrée à un résultat cohomologique en direction de la conjecture de Zilber-Pink. Étant donné un groupe algébrique semi-simple sur un corps de nombres F contenu dans ℝ, nous démontrons que deux sous-groupes algébriques semi-simples définis sur F sont conjugués sur F, si et seulement s'il le sont sur une extension réelle finie de F de degré majoré indépendamment des sous-groupes choisis. Il s'agit d'un travail en commun avec Mikhail Borovoi et Christopher Daw. La troisième partie étudie la distribution des variétés de Shimura compactes. On rappelle qu'une variété de Shimura S de dimension 1 est toujours compacte sauf si S est une courbe modulaire. Nous généralisons cette observation en définissant une fonction de hauteur dans l'espace des variétés de Shimura associée à un groupe réductif réel donné. Dans le cas des groupes unitaires, on prouve que la densité des variétés de Shimura non-compactes est nulle. / In this thesis, we study some arithmetic and geometric problems for Shimura varieties. This thesis consists of three parts. In the first part, we study some applications of model theory to number theory. In 2014, Pila and Tsimerman gave a proof of the Ax-Schanuel conjecture for the j-function and, with Mok, have recently announced a proof of its generalization to any (pure) Shimura variety. We refer to this generalization as the hyperbolic Ax-Schanuel conjecture. In this article, we show that the hyperbolic Ax-Schanuel conjecture can be used to reduce the Zilber-Pink conjecture for Shimura varieties to a problem of point counting. We further show that this point counting problem can be tackled in a number of cases using the Pila-Wilkie counting theorem and several arithmetic conjectures. Our methods are inspired by previous applications of the Pila-Zannier method and, in particular, the recent proof by Habegger and Pila of the Zilber-Pink conjecture for curves in abelian varieties. This is joint work with Christopher Daw. The second part is devoted to a Galois cohomological result towards the proof of the Zilber-Pink conjecture. Let G be a linear algebraic group over a field k of characteristic 0. We show that any two connected semisimple k-subgroups of G that are conjugate over an algebraic closure of kare actually conjugate over a finite field extension of k of degree bounded independently of the subgroups. Moreover, if k is a real number field, we show that any two connected semisimple k-subgroups of G that are conjugate over the field of real numbers ℝ are actually conjugate over a finite real extension of k of degree bounded independently of the subgroups. This is joint work with Mikhail Borovoi and Christopher Daw. Finally, in the third part, we consider the distribution of compact Shimura varieties. We recall that a Shimura variety S of dimension 1 is always compact unless S is a modular curve. We generalize this observation by defining a height function in the space of Shimura varieties attached to a fixed real reductive group. In the case of unitary groups, we prove that the density of non-compact Shimura varieties is zero.
|
Page generated in 0.0598 seconds