• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Power Amplifier Test Signals with a User-Defined Multisine

Nagarajan, Preeti 05 1900 (has links)
Cellular radio communication involves wireless transmission and reception of signals at radio frequencies (RF). Base stations house equipment critical to the transmission and reception of signals. Power amplifier (PA) is a crucial element in base station assembly. PAs are expensive, take up space and dissipate heat. Of all the elements in the base station, it is difficult to design and operate a power amplifier. New designs of power amplifiers are constantly tested. One of the most important components required to perform this test successfully is a circuit simulator model of an entire communication system that generates a standard test signal. Standard test signals 524,288 data points in length require 1080 hours to complete one test of a PA model. In order to reduce the time taken to complete one test, a 'simulated test signal,' was generated. The objective of this study is to develop an algorithm to generate this 'simulated' test signal such that its characteristics match that of the 'standard' test signal.
2

Improved frequency domain measurement techniques for characterizing power amplifier and multipath environments

McKinley, Michael Dean 19 August 2008 (has links)
This work focuses on fixing measurement inaccuracies to which models and figures of merit are susceptible in two wireless communication environments: power amplifier and multipath. To emulate or rate the performance of these environments, models and figures of merit, respectively, are often used. The usefulness of a model depends on how accurately and efficiently it emulates its real-world counterpart. The usefulness of a figure of merit depends on how accurately it represents system behavior. Most discussions on the challenges and trade-offs faced in modeling nearly always focus on the complexity of the device or channel of interest and the resultant difficulty in describing it. Similarly, figures of merit are meant only to summarize the performance of the device or channel. At some point, either in generation or verification of a model or figure of merit, there is a dependence on measured data. Though the complexity and performance of the device or channel are challenges by themselves, there are other significant sources of distortion that must be minimized to avoid errors in the measured data. For this work, the unique distortion of power amplifier and multipath environments is considered, and then errors in measurement which would obscure these distortions are eliminated. Specifically, three measurement issues are addressed: 1) identifying measurement setup artifacts, 2) achieving consistent measurement results and 3) reducing variations in the environment. This work contributes to increasing the accuracy of microwave measurements used in the modeling of nonlinear high-power amplifiers and used in figures of merit for power amplifiers and multipath channels.

Page generated in 0.0454 seconds