Spelling suggestions: "subject:"muon"" "subject:"tuon""
101 |
Mesure de la production de J/ψ en collisions p-Pb au LHC avec le spectromètre à muons d'ALICE / Measurement of the J/ψ production in p-Pb collisions at the LHC with the ALICE muon spectrometerLakomov, Igor 19 September 2014 (has links)
Les sondes dures apparaissent comme l'un des sujets les plus excitant de la Physique des hautes énergies. Les mécanismes de production des quarkonia (mésons formés par l'état lié quark-antiquark charmé ou beau) dans les collisions hadroniques sont particulièrement intéressants. La suppression du J/ψ et des autres charmonia a été prédites comme l'une des signatures de la formation du Plasma de Quark et de Gluons (PQG), suppression déjà observée au SPS et au RHIC. De nombreuses études de la suppression des charmonia ont également été menées au LHC. Cependant, d'autres effets sont susceptibles de modifier la production de charmonia sans requérir la formation d'un QGP. Ces effets, inhérents aux collisions impliquant des noyaux, sont appelés effets nucléaires froids ou CNM («Cold Nuclear Matter»). Ils peuvent être étudiés dans les collisions p-Pb. Cette thèse est dédiée à l'analyse de la production de J/ψ dans les collisions p-Pb collisions à une énergie dans le centre de masse de 5.02 TeV par paire de nucléon au LHC. La production de J/ψ est étudiée en fonction de l'impulsion transverse, de la rapidité et de l'activité de la collision. Ces résultats apportent une contribution significative dans la compréhension des effets CNM et dans l'établissement d'une référence pour l'interprétation de la production de J/ψ dans les collisions Pb-Pb. / Hard probes represent one of the hottest topics of the modern high energy physics. The production mechanism of quarkonia (mesons composed of a charm or beauty quark and its antiquark) in hadronic collisions is of particular interest. The suppression of J/ψ and other charmonium states was predicted as one of the first signatures of the Quark Gluon Plasma (QGP) formation and was seen at RHIC and SPS. It was also studied at the LHC in Pb-Pb collisions. However, other effects can affect the charmonium production in Pb-Pb collisions without the presence of the QGP. These effects are inherent to the use of nuclei and are called «Cold Nuclear Matter» (CNM) effects. They can be studied in p-Pb collisions. This thesis is dedicated to the studies of J/ψ production in p-Pb collisions at the LHC at a center of mass energy of 5.02 TeV per nucleon pair. J/ψ production is studied as a function of transverse momentum, rapidity and event activity. These results represent a significant step to better understanding of the CNM effects and to the establishment of a reference for J/ψ production in Pb-Pb collisions.
|
102 |
Exploring the quark correlator of an axial-vector with two vector currentsAn, Di January 2021 (has links)
No description available.
|
103 |
STUDY OF ATOMIC AND MAGNETIC CORRELATIONS IN FERROMAGNETIC NI-ALLOYSAdawi, Hind A. 27 April 2022 (has links)
No description available.
|
104 |
Magnetic Characterization of Y_(2-x)Bi_xIr_2O_7: A Muon Spin Rotation/Relaxation and Susceptibility StudyMedina Fernandez, Teresa 11 1900 (has links)
Pyrochlore iridates have received considerable attention for the past few years as they possess strong electron correlations and spin orbit coupling, giving rise to a finite temperature metal-insulator transition (MIT). The nature of this MIT transition is related to the magnetic order of the Ir atoms which also experience frustration as they are part of a pyrochore structure. The aim of this study is to elucidate the magnetic configuration of the magnetic iridium ions by doping Y2Ir2O7 with Bi. Here we present a study on the magnetic properties of the Y2−xBixIr2O7 (x = 0, 0.2, 0.4, 0.9, 1.3, 2) system using μSR and DC susceptibility.
Our results show that pure Y2Ir2O7 has a magnetic transition to a long- range ordered state. Substituting Bi by Y results in a lower temperature transition with increasing amount of bismuth. When the system goes into the ordered state a weak ferromagnetic moment is seen. This is in agreement with the belief that the system orders in an canted antiferromagnetic fashion with all-in all-out spins in the tetrahedron of the pyrochlore structure. However the addition of bismuth into the sample does not change the internal magnetic field measured at low temperatures with μSR, but only changes the transition temperature and the ordered volume fraction.
For the Bi2Ir2O7 system two magnetic transitions had been measured previously counter to the belief that this material did not order magnetically. In this work, our μSR measurements show no evidence of such a transition. In the transverse field μSR set up a small Knight shift is measured due to the local susceptibility of Bi2Ir2O7. / Thesis / Master of Science (MSc)
|
105 |
INTERPLAY BETWEEN CHEMICAL AND MAGNETIC DISORDER IN SELECTED ALLOYS CLOSE TO A FERROMAGNETIC QUANTUM PHASE TRANSITIONGebretsadik, Adane Samuel, Gebretsadik 31 May 2018 (has links)
No description available.
|
106 |
HARP Targets Pion Production Cross Section and Yield Measurements: Implications for MiniBooNE Neutrino FluxWickremasinghe, Don Athula A. 12 October 2015 (has links)
No description available.
|
107 |
Electronic & Magnetic Properties of Ba(Fe,Co)2As2 & URu2Si2Williams, Travis J. 04 1900 (has links)
<p>This thesis details a collection of experiments performed on two condensed matter systems, Co-doped BaFe<sub>2</sub>As<sub>2</sub> and URu<sub>2</sub>Si<sub>2</sub>. These two materials are related by their structural type (<em>ThCr<sub>2</sub>Si<sub>2</sub></em>-type) serving as great examples of the diversity of material properties present in this family. They are also both superconducting materials and belong to the collection of strongly-correlated electron systems. The interest in studying the Ba(Fe,Co)<sub>2</sub>As<sub>2</sub> group of materials is due to the high superconducting transition temperature in these (and related) materials, while the compound URu<sub>2</sub>Si<sub>2</sub> was studied due to the presence of a poorly-understood 'hidden order' phase.</p> <p>Muon spin relaxation/rotation/resonance (µSR) was used to measure several single crystals of the series Ba(Fe<sub>2-<em>x</em></sub>Co<em><sub>x</sub></em>)<sub>2</sub>As<sub>2</sub> with Cobalt concentrations <em>x </em>= 0.038, 0.047, 0.061, 0.074, 0.107 and 0.114, and a single crystal of Sr(Fe<sub>0.87</sub>Co<sub>0.13</sub>)<sub>2</sub>As<sub>2</sub>. The two samples with the lowest doping, <em>x </em>= 0.038 and <em>x </em>= 0.047, showed strong c-axis magnetism occurring below the magnetic transition, T<sub>SDW</sub>. The measurements suggest that the local magnetic field is increasingly disordered as the concentration of Co increases. These samples were shown to exhibit both superconductivity and magnetism, but that the entire sample contains non-zero local magnetic fields, meaning that superconductivity exists in or near regions of strong magnetic order.</p> <p>The remaining compounds (with <em>x </em>= 0.061, 0.074, 0.107, 0.114 and Sr(Fe<sub>0.87</sub>Co<sub>0.13</sub>)<sub>2</sub>As<sub>2</sub>) were measured with zero-field (ZF)-µSR and no magnetic ordering was found down to T = 1.65 K. An analytic Ginzburg-Landau model was used to fit the data and obtain absolute values for the penetration depth, λ. A model for the temperature dependence of the density of superconducting carriers, n<sub>s</sub> ≈ λ<sup>2</sup>, based on two <em>s</em>-wave gaps describes the data well. Below T<sub>SC</sub>, a paramagnetic frequency shift was observed indicative of field-induced magnetism along the c crystallographic direction.</p> <p>Measurements of URu<sub>2</sub>Si<sub>2</sub> under chemical and hydrostatic pressure have focused on measuring the spin correlations that are present in the hidden order phase. The chemical pressure that is induced by 5% Re doping perturbs, but does not destroy, the commensurate spin excitations. The spin gap that is present in the parent material is also present under this chemical doping. The hidden order phase survives at least halfway to the quantum critical point to ferromagnetism, but is weakened by the Re substitution.</p> <p>Under hydrostatic pressure of 10.1 kbar, URu<sub>2</sub>Si<sub>2</sub> becomes antiferromagnetic, but the spin correlations are found to be qualitatively similar to those of the hidden order phase. The width in reciprocal space (Q-width) of the excitations and their gapped nature remains unchanged upon entering the antiferromagnetic phase. Quantitatively, there is an increase in the magnitude of the gap at Q = (1.4 0 0). This may be a result of the increase in the transition temperature preceding the entry to the antiferromagnetic phase.</p> <p>Due to the large difference in their properties, and hence the motivation for studying Ba(Fe<sub>1-<em>x</em></sub>Co<em><sub>x</sub></em>)<sub>2</sub>As<sub>2</sub> and URu<sub>2</sub>Si<sub>2</sub>, they will be introduced and presented separately. Chapter 1 will provide the necessary background material on Ba(Fe,Co)<sub>2</sub>As<sub>2</sub>, while Chapter 2 will provide the background for the work on URu<sub>2</sub>Si<sub>2</sub>. Chapter 3 will describe the experimental techniques that were used to study these systems.</p> <p>Original research results on Ba(Fe,Co)<sub>2</sub>As<sub>2</sub> are presented in Chapter 4. This is mainly focused on µSR measurements of dopings that display superconductivity. Samples that did not order magnetically were measured in the mixed state to measure the vortex lattice to extract the various properties, including the superconducting pairing symmetry. Samples that did order magnetically were measured to analyze the amount of magnetic disorder and discover the extent of coexistence or phase separation between magnetism and superconductivity.</p> <p>Chapter 5 details the original research results on URu<sub>2</sub>Si<sub>2</sub>. This involved crystal growth of these compounds, and two neutron scattering experiments to measure the spin correlations while perturbing the hidden order state. The first experiment was done on a Re-doped crystal, URu<sub>1.9</sub>Re<sub>0.1</sub>Si<sub>2</sub>. Doping with Re suppresses the hidden order, eventually leading to ferromagnetism at higher dopings. This work showed that the spin correlations are also suppressed, but not as quickly as the hidden order. The second experiment was on pure URu<sub>2</sub>Si<sub>2</sub> under hydrostatic pressure. Applied pressure increases the hidden order transition, but eventually leads to antiferromagnetism, the phase in which the experiment was performed.</p> / Doctor of Philosophy (PhD)
|
108 |
Measurement of muon antineutrino disappearance in the T2K ExperimentMyslik, Jordan William 22 July 2016 (has links)
The T2K ("Tokai-to-Kamioka") Experiment is a long-baseline neutrino oscillation experiment. A beam of primarily muon neutrinos (in neutrino beam mode) or antineutrinos (in antineutrino beam mode) is produced at the J-PARC ("Japan Proton Accelerator Research Complex") facility. The near detector (ND280), located 280 m from the proton beam target, measures a large event rate of neutrino interactions in the unoscillated beam, while the far detector, Super-Kamiokande, 295 km away, searches for the signatures of neutrino oscillation. This dissertation describes the analyses of data at ND280 and Super-Kamiokande leading to T2K's first results from running in antineutrino beam mode: a measurement of muon antineutrino disappearance. The measured values of the antineutrino oscillation parameters (Normal Hierarchy) are (sin²(θ̅₂₃), |Δm̅²₃₂|) = (0.450, 2.518 x 10ˉ³ eV²/c⁴), with 90% 1D confidence intervals 0.327 < sin²(θ̅₂₃) < 0.692 and 2.03 x 10ˉ³ eV²/c⁴ < |Δm̅²₃₂| < 2.92 x 10ˉ³ eV²/c⁴. These results are consistent with past measurements of these parameters by other experiments, and with T2K's past measurements of muon neutrinos. / Graduate
|
109 |
Hydrogen diffusion in concentrated metal hydridesLam, James January 1998 (has links)
No description available.
|
110 |
The magnetic properties of superconductorsLloyd, Sion January 1999 (has links)
No description available.
|
Page generated in 0.0389 seconds