• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 19
  • 9
  • 5
  • 3
  • 2
  • Tagged with
  • 158
  • 70
  • 40
  • 30
  • 28
  • 23
  • 23
  • 22
  • 21
  • 20
  • 20
  • 19
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Analyse de la production de Upsilon dans les collisions pp à 7 TeV avec le spectromètre à muons de l'expérience ALICE / Analysis of Upsilon production in pp collisions at 7 TeV with the ALICE Muon Spectrometer

Ahn, Sang Un 05 December 2011 (has links)
Résumé indisponible / Résumé indisponible
72

Unconventional properties of the antiperovskite oxide superconductor Sr₃-xSnO and a related compound / 逆ペロブスカイト酸化物超伝導体Sr₃-xSnOと関連物質の特異な物性

Ikeda, Atsutoshi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22235号 / 理博第4549号 / 新制||理||1654(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 前野 悦輝, 教授 松田 祐司, 教授 佐藤 昌利 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
73

The relationships between neutrino Majorana mass and other physics / ニュートリノマヨラナ質量と他の物理の関係

Ohata, Takahiro 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第22993号 / 理博第4670号 / 新制||理||1670(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 吉岡 興一, 教授 田中 貴浩, 准教授 髙山 史宏 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
74

Low-Energy Spin Dynamics in geometrically frustrated 3d-Magnets and Single-Ion Spin Systems: µ+SR studies on BaTi0:5Mn0:5O3 and NaCaCo2F7 and 57Fe-Mössbauer spectroscopy on Fe-diluted Li2(Li1-xFex)N

Bräuninger, Sascha Albert 28 February 2020 (has links)
In this work, I present nuclear probe spectroscopy studies, in detail, µ+SR and 57Fe-Mössbauer spectroscopy on solid-state systems with localized magnetic moments of 3d transition-metal ions supported by density functional theory calculations. Local probes are able to extract local quantities, e.g. the spin dynamics of the 57Fe site or the local, mostly interstitial µ+ site to distinguish between di_erent magnetic phases. The density functional theory calculations help to identify the muon site position from which the local quantity depends. My µ+SR studies on frustrated 3d magnets with quenched disorder concern the physics of phase transitions, avoided order-by-disorder, quantum uctuations or the appearance of spin-liquid-by-disorder. µ+SR is able to identify quantum spinliquid-like ground states without symmetry breaking or static magnetic order by the magnetic field at the muon site. BaTi0.5Mn0.5O3 is a magnetically highly-frustrated double perovskite with quenched disorder.It shows no freezing temperature or no frequency dependence of x1as expected for a spin glass. Microscopically, it is proposed that local interactions between magnetic orphan spins, dimers, and magnetic trimers of Mn4+ play an important role. The µ+SR experiment on BaTi0.5Mn0.5O3 shows an increase of the dynamical muon spin relaxation rate below 3 K which saturates down to 0.019 K coexisting with residual short-range magnetic order (<20% of the signal). A clear difference is observed in comparison with the classical cluster-spin glass SrTi0.5Mn0.5O3 which shows a peak of the zero-field muon spin relaxation rate: a persistent low-energy spin dynamics is present in BaTi0.5Mn0.5O3 down to 20 K. My DFT calculations propose a positive muon site insight the Ba plane close to O atoms. Here, a slight preference of the muon site close to Mn4+ is possible which could put the muon close the orphan spins, dimers, and magnetic trimers, respectively, avoiding the nonmagnetic Ti4+ face-sharing octahedra. Theoretically, a specific ground state of BaTi0.5Mn0.5O3 is not proposed. A clear discrimination between a quantum spin liquid ground state and a mimicry state with the appearance of spin-liquid-by-disorder is not possible from the existing data. I present a µ+SR study on the bond-disordered magnetically highly frustrated pyrochlore fluoride NaCaCo2F7. Neutron spectroscopy studies on NaCaCo2F7 revealed static short-range order consistent with a continuous manifold of cluster-like states being a superposition of noncoplanar ψ2(m3z2-r2) and coplanar ψ3(mx2-y2) states with a correlation length of around 16Å. No evidence for static magnetic long-range order is found in NaCaCo2F7 probed by µ+SR confirming the absence of an order-by-disorder mechanism. The experimental results are not consistent with a classical local-planar XY cluster-spin glassiness. In these µSR experiments, two muon sites are observed. The relative occupancy of both muon sites is nearly temperature independent. Muon site I is a collinear diamagnetic F-µ+-F bound state pulling two F- close towards the muon revealed by the muon spin time evolution. To investigate the pure F-µ+-F bound state in a broad temperature range I have performed an additional µ+SR study on CaF2. This study solved open questions of muon diffusion around 290 K which was observed in NaCaCo2F7 as well. The F-µ+-F spin relaxation indicates the slowing down of the magnetic Co2+ spin fluctuations upon cooling towards the NMR spin freezing temperature Tf≈ 2.4 K. The relaxation rate saturates below 800 mK and remains constant down to 20 mK. The dominant part of the magnetic short-range relaxation signal is a dynamical relaxation as probed by longitudinal magnetic-field experiments. Muon site II exhibits a strong dynamical relaxation rate at 290 K and below and shows persistent µ+ spin dynamics down to 20 mK. Qualitatively, muon site II shows persistent µ+ spin dynamics with one order of magnitude higher dynamical relaxation rates compared to muon site I. DFT calculations of a comparison of the unperturbed unit cells of NaCaCo2F7 and NaCaNi2F7, which has shown just one muon site experimentally, are consistent with a decrease of the energy differences of energy minima and support the experimentally observed muon site ambivalence. In summary, the µ+SR studies propose NaCaCo2F7 as a quantum cluster-spin glass candidate. I present a systematic 57Fe-Mössbauer study on highly diluted Fe centers in Li2(Li1-xFex)N as a function of temperature and magnetic field applied transverse and longitudinal with respect to the single-ion anisotropy axis. Here, Fe is embedded in an α-Li3N matrix. The oxidation state of Fe and possible ferromagnetic nature are in controversial discussions in the literature. Below 30 K the Fe centers exhibit a giant magnetic hyperfine field of BA=70.25(2) T parallel to the axis of strongest electric field gradient Vzz=-154.0(1) V / Å 2. This observation is consistent with a Fe1+d7 charge state with unquenched orbital moment and J=7/2. Fluctuations of the magnetic hyperfine field are observed between 50 K and 300 K and described by the Blume two-level relaxation model consistent with single-atomic magnetism as proven by the invariance of Blume relaxation parameters for the concentration tuning x< 0.025 excluding a ferromagnetic nature. From the temperature dependence of the fluctuation rate an Orbach spin-lattice relaxation process is deduced. An Arrhenius analysis yields a single thermal-activation barrier of EA=570(6) K and an attempt frequency v0=309(10) GHz. Mössbauer spectroscopy studies with applied transverse magnetic fields up to 5 T reveal a large increase of the fluctuation rate by two orders of magnitude. In longitudinal magnetic fields a splitting of the fluctuation rate into two branches is observed. The experimental observations are qualitatively reproduced by a single-ion spin Hamiltonian analysis. It demonstrates that for dominant magnetic quantum tunneling relaxation processes a weak axial single-ion anisotropy D of the order of a few Kelvin can cause a two orders of magnitude larger energy barrier for longitudinal spin fluctuations.
75

Developments Towards High-Resolution Muonic Atom X-ray Spectroscopy of Low-Z Elements : For precision measurements of absolute nuclear charge radii

Verbeek, Benjamin January 2023 (has links)
This Master's thesis investigates a method to measure atomic nuclei with record precision using muonic atom X-ray spectroscopy. In particular, 6Li is measured experimentally. The method used is independent from the previous most precise measurement of the 6Li nuclear charge radius which uses electron scattering. Measuring low-Z elements using muonic X-ray transitions requires excellent detectors which have so far been mostly optimised for higher energies. This project investigates methods to reach precision requirements for low-Z elements which can yield insight into nuclear structure models, and uses a Silicon Drift Detector (SDD) which is here characterised in detail and found to allow for significantly improved results over previous attempts. So far, the SDD and developed calibration scheme demonstrates a 3.7 eV precision compared to the target 0.5 eV. It appears to be limited by detector resolution, which also makes curve fitting difficult for complex line structures. A new method for generating calibration lines, X-ray fluorescence, is tested and shows good promise for future use. The planned use of a Metallic Magnetic Microcalorimeter will potentially improve results significantly, having a much-improved resolution over SDD's. Preliminary experimental results find ΔEµLi-6, 2p-1s = 18780.6 ± 15.7 eV, which is a factor of 4 improvement over the previous best measurement of this transition and the world's most precise measurement to date. While the uncertainty is larger than seen in designated calibration runs, it demonstrates the ability to perform high-precision muonic atom spectroscopy. With new detector technologies, this thesis finds no immediate obstacles to the target 0.5 eV precision.
76

Dy2ScNbO7: a study of the effect of a disordered B-site on the spin ice magnetism typically seen in dysprosium pyrochlores / Dy2ScNbO7: the magnetism of a mixed B-site pyrochlore

Rutherford, Megan R. January 2021 (has links)
The thermodynamics of disorder have been studied for hundreds of years, with physicists using entropy to quantitatively connect the macroscopic properties of a system to its microscopic multiplicity (disorder). Here, we consider the effect of disorder in magnetic materials. The pyrochlore oxides (A2B2O7), comprised of a bipartite lattice of corner-sharing tetrahedra, have been central to the study of geometric frustration for the past several decades. Pyrochlores, in which the A-site is occupied by the magnetic cation dysprosium, tend to exhibit spin ice ordering down to low temperatures, in spite of chemical perturbations to the B-site lattice. With the motivation of this study being the investigation of how adding B-site disorder to the traditional Dy2ScNbO7 form of Dy-pyrochlores, a stoichiometric mixture of Sc-3+ and Nb-5+ was used to synthesize Dy2ScNbO7, the pyrochlore material that is central to this thesis work. We show using magnetometry, heat capacity, muon spin relaxation, and inelastic neutron scattering that the mixed B-site pyrochlore Dy2ScNbO7, does not adopt the spin ice ground state. The low temperature spin dynamics are much faster than other analogous dysprosium pyrochlores, the residual entropy is significantly smaller than that predicted for a spin ice and there are low-lying crystal field excitations. These results all indicate that the B-site disorder appears to destroy the predicted Ising anisotropy of dysprosium. / Thesis / Master of Science (MSc)
77

A Study on Muon Drift Tube Health Monitoring with a Concentration in Temperature and Gas Composition

Arroyo, Eduardo 05 May 2010 (has links)
No description available.
78

A search for disappearing tracks in proton-proton collisions at sqrt(s) = 8 TeV

Brinson, Jessica 19 May 2015 (has links)
No description available.
79

Search for the decays of stopped exotic long-lived particles produced in P-P collisions at 13 TeV at CMS

Ji, Weifeng 18 September 2018 (has links)
No description available.
80

Studies of the Ferromagnetic Superconductors URhGe and UCoGe

Williams, Travis J. 09 1900 (has links)
<p>This thesis comprises studies on two ferromagnetic superconductors, URhGe (Tcurie=9.SK and Tsc=2S0mK) and UCoGe (Tcurie=2.SK and Tsc=800mK). These properties are interesting because the current theory to explain superconductivity predicts that ferromagnetism should destroy superconductivity. Not only is that not true in these materials, but ferromagnetism and superconductivity are thought to arise from a common mechanism. The studies conducted on these materials arise from that possibility, in an attempt to understand the unconventional nature of these materials.<br />Original work is contained in chapters 4, Sand 6. All of this work is currently not published in sources other than this thesis. <br /> Chapter 1 will give an introduction to these materials, and the work that has been done on them by other groups, and work done on related materials. <br /> Chapter 2 will give details of the various experimental methods used in measuring the structure and properties of the materials studied. This work was conducted by the author at McMaster University, with the assistance of individuals from the Brockhouse Institute for Materials Research, and the Center for Electron Microscopy at McMaster University.<br /> Chapter 3 will provide an introduction to the technique of muon Spin Resonance/Relaxation (μSR). This work was done at the TRIUMF facility in Vancouver, British Columbia, with the assistance of several TRIUMF staff. The data was collected by the author, and other members of Dr. Luke's research group as well as collaborators from TRlUMF and from Columbia University. <br /> Chapter 4 will present the measurements made on UCoGe, while Chapter 5 presents the measurements of URhGe. Details of the crystal growth and structure characterization measurements are included in these chapters, along with resistivity, bulk magnetization and μSR measurements. <br /> Both zero- field (ZF) and transverse field (TF) μSR has been performed. This work focuses on studying the magnetic moment size, and the magnetic volume fraction around the ferromagnetic transition, and to temperatures as low as 20mK. Consideration is also given to the magnetic and superconducting properties in the low-temperature region. <br /> In the Introduction, URhGe is presented first, followed by UCoGe, since this was the order in which they were discovered. The results obtained from UCoGe are presented first, since work on that compound was started before the work on URhGe. <br /> Chapter 6 focuses on the conclusions drawn from this work, comparing the measurements of both materials.</p> / Master of Science (MS)

Page generated in 0.0663 seconds