• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 19
  • 9
  • 6
  • 3
  • 2
  • Tagged with
  • 160
  • 71
  • 40
  • 30
  • 28
  • 24
  • 23
  • 22
  • 21
  • 21
  • 20
  • 19
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Synthesis and study of frustrated oxide and mixed anion materials

Clark, Lucy January 2013 (has links)
Mixed anion systems, such as oxynitrides and oxyfluorides, are an emerging class of interesting materials. The lower stability of mixed anion systems in comparison to oxide materials has had the consequence that this area of materials research is relatively less well explored. However, the development of new synthesis techniques has resulted in the preparation of many new mixed anion systems and so a detailed understanding of their structure and how this relates to their electronic and magnetic properties is necessary. Within this Thesis, several oxide, oxynitride and oxyfluoride systems are investigated with a particular focus on the magnetic behaviour of materials based on geometrically frustrated pyrochlore and kagome lattices. The Lu2Mo2O7 pyrochlore contains a geometrically frustrated network of vertex sharing Mo4+ (d2 S = 1) tetrahedra. Here, the solid state synthesis of Lu2Mo2O7−x is reported along with a discussion of the coexistence of two cubic pyrochlore phases that has been discovered in samples synthesised at 1600 ◦C. Powder neutron diffraction and thermogravimetric analysis have revealed that this two-phase behaviour originates from a miscibility gap between stoichiometric Lu2Mo2O7 and oxygen deficient Lu2Mo2O6.6. Magnetic susceptibility and muon spin relaxation measurements support the formation of a geometrically frustrated spin glass ground state in Lu2Mo2O7 with a spin freezing temperature Tf ∼ 16 K. Low temperature neutron diffraction has confirmed the absence of long range magnetic order and magnetic diffuse neutron scattering data have indicated the presence of competing nearest and next nearest neighbour antiferromagnetic exchange interactions in the spin glass state. The magnetic heat capacity of Lu2Mo2O7 follows a T2-dependence at the low temperatures, indicating that Lu2Mo2O7 is another rare example of an unconventional, topological spin glass, which is stable in the absence of significant chemical disorder. The magnetic properties of the oxygen deficient pyrochlore phase Lu2Mo2O6.6 are qualitatively similar to those of Lu2Mo2O7, but an increase in the spin freezing temperature Tf ∼ 20 K suggests that oxygen-vacancy disorder in Lu2Mo2O6.6 favours the onset of a glassy state at higher temperatures and enhances the degree of frustration. Oxynitride pyrochlores with the ideal composition R2Mo2O5N2 (R = rare earth) contain Mo5+ d1 S = 1 2 cations on the frustrated pyrochlore lattice and are thus ideal candidates to support exotic magnetic ground states. Here, the synthesis of oxynitride pyrochlores of the Lu2Mo2O7 system by thermal ammonolysis is discussed alongside powder neutron diffraction and susceptibility data that show no evidence for long range magnetic order and an absence of spin freezing down to at least 2 K despite the persistence of strong antiferromagnetic exchange (θ = −120 K). A comparison of the magnetic diffuse neutron scattering between the spin glass state of Lu2Mo2O7 and the oxynitride is given, which suggests that the majority of the magnetic scattering in the oxynitride system is inelastic. In addition, low temperature magnetic heat capacity shows an absence of magnetic phase transitions and a continuous density of states through a T-linear dependence down to 500 mK. [NH4]2[C7H14N][V7O6F18], diammonium quinuclidinium vanadium(III,IV) oxyfluoride or DQVOF, is a kagome bilayer system with a geometrically frustrated two-dimensional kagome network of V4+ d1 S = 1 2 cations and V3+ d2 S = 1 cations between the kagome layers. Here, low temperature magnetisation and heat capacity data are presented, which demonstrate that the interplane V3+ d2 cations are well decoupled from the kagome layers at low temperatures such that DQVOF is a good experimental realisation of a S = 1 2 kagome antiferromagnet. Despite significant antiferromagnetic exchange (θ = −60 K) within the kagome planes, muon spin relaxation data have confirmed the absence of spin freezing and the persistence of internal field fluctuations that are intrinsic to the kagome layers down to temperatures of 40 mK. The low temperature heat capacity of the V4+ kagome network follows T-linear behaviour down to the 300 mK, highlighting the absence of a spin gap in the low energy excitation spectrum of DQVOF. The low temperature magnetic study of DQVOF presented here thus strongly supports the formation of a gapless quantum spin liquid phase. In the final results chapter, a discussion of the anion ordering principles in oxynitride systems is given. A high temperature, high resolution neutron diffraction study of the oxynitride perovskite SrTaO2N has revealed that the partial anion order that results in segregated Ta-N zig-zag chains is stable up to 1100 ◦C. Furthermore, these anion ordering principles are extended to the d1 perovskite oxynitrides RVO2−xN1+x (R = La, Nd, Pr) in a variable temperature neutron diffraction study, which confirms that the anion chain ordering discovered in d0 SrTaO2N is robust to electron doping. The R = La analogue also provides an interesting example of a rhombohedral oxynitride perovskite phase which coexists with an orthorhombic phase over the 4−300 K temperature range of the neutron diffraction study.
52

Particle tracking using the unscented Kalman filter in high energy physics experiments

Akhtar, Jahanzeb January 2015 (has links)
The extended Kalman lter (EKF) has a long history in the field of non-linear tracking. More recently, statistically-based estimators have emerged that avoid the need for a deterministic linearisation process. The Unscented Kalman filter (UKF) is one such technique that has been shown to perform favourably for some non-linear systems when compared to an EKF implementation, both in terms of accuracy and robustness. In this Thesis, the UKF is applied to a high energy physics particle tracking problem where currently the EKF is being implemented. The effects of measurement redundancy are investigated to determine improvements in accuracy of particle track reconstruction. The relationship between measurement redundancy and relative observability is also investigated through an experimental and theoretical analysis. Smoothing (backward filtering), in the high energy physics experiments, is implementedusing the Rauch Tung Striebel (RTS) smoother with the EKF , however, in Unscented Kalman filter algorithms, the Jacobian matrices required by the RTS method, are not available. The Unscented Rauch Tung Striebel (URTS) smoother addresses this problem by avoiding the use of Jacobian matrices but is not effi cient for large dimensional systems such as high energy physics experiments. A technique is implemented in the RTS smoother to make it suitable for the UKF. The method is given the name the Jacobian Equivalent Rauch Tung Striebel (JE-RTS) smoother. The implementation of this method is quite straight forward when the UKF is used as an estimator.
53

Muon-spin relaxation and its application in the study of molecular quantum magnets

Möller, Johannes S. January 2013 (has links)
This thesis is concerned with the muon-spin relaxation (musr) technique and its application in the study of a number of molecular magnetic systems that may be driven through a quantum phase transition at low temperatures through the application of a magnetic field or hydrostatic pressure. Musr is a highly sensitive probe of magnetism, but its utility can be severely limited by the lack of knowledge of the muon implantation site and the extent to which the muon perturbs its host. In a system of ionic fluorides, where partial information about the muon site is experimentally available, I demonstrate systematically that these problems can be addressed accurately using electronic-structure calculations. The F--$mu$--F complex formed by muons in many fluorides can be understood as an exotic molecule-in-a-crystal defect with a zero-point energy larger than that of any naturally-occurring triatomic molecule. I demonstrate the interesting possibility of controlling the magnetic dimensionality in a molecular magnet using applied pressure. musr and high-field magnetisation experiments under applied pressure on the coordination polymer CuF$_2$(H$_2$O)$_2$(pyrazine) show a transition from a quasi-two-dimensional to a quasi-one-dimensional antiferromagnetic phase. Density-functional theory calculations and calculations of the dipolar anisotropy complement the experiments. I describe how subtle differences in chemical composition can lead to starkly different structural and magnetic properties. [Cu(pyz)(H$_2$O)(gly)$_2$](ClO$_4$)$_2$ may be considered an antiferromagnetic chain that orders below 50 mK while the related compound [Cu(pyz)(gly)](ClO$_4$) is formed from Cu$^{2+}$ dimers and remains disordered down to 30 mK in zero field, but displays a field-temperature phase diagram consistent with the Bose-Einstein condensation of triplons. I also describe musr measurements on the strong-leg spin ladder DIMPY and on the molecular nanomagnets Cr$_8$Cd and Cr$_8$Mn which highlight some of the remaining challenges for longitudinal-field musr experiments.
54

Constraints on the Kaluza-Klein Photon as a Dark Matter Candidate from the IceCube Collaboration Results

Colom i Bernadich, Miquel January 2019 (has links)
New constraints on the scattering cross sections of the Kaluza Klein photon as a darkmatter candidate, its annihilation rate in the Sun and the resulting muon flux on Earth are derived.For this purpose, data collected in the IceCube Neutrino Observatory during 532 days of exposurein the austral winters between 2011 and 2014 have been analyzed with Poisson confidence intervals (J. Conrad et al., 2003) and compared to the simulated prediction achieved with the WimpSimsoftware (J. Edsjö et al., 2003). The results do not allow for any detection claim, but they improveby one order of magnitude the constraints formerly presented in R. Abbasi et al. (2010). Despitethe recent results from LHC experiment which discard lower masses for the Kaluza Klein photon (N. Deutschmann et al., 2017), the new constraints are still relevant for masses above 1500 GeV.
55

Studies of muon efficiences for measurement of W charge asymmetry in inclusive pp→W (μυ) production at √s=7 TeV

Ogul, Hasan 01 July 2013 (has links)
The main motivation of the Compact Muon Solenoid (CMS) experiment is to explore and to discover physics underlying electro-weak asymmetry breaking. Beside this, CMS detector provides an opportunity to do various experiments for detecting new physics signatures beyond the Standard Model (SM). Investigation of these signatures requires the identification and precise energy and moment measurement of electrons, muons, photons, and jets. The objective of this thesis is the calculation of the efficiencies for the measurement of W charge asymmetry in inclusive pp→W (μυ) production. The charge asymmetry is defined to be the difference between W^+ and W^- bosons, normalized to the sum. This asymmetry is sensitive to the u-quark and d-quark ratios in the proton and precise measurement of the W charge asymmetry can provides new insights to the proton structure functions. Therefore, to improve understanding of SM backgrounds in search for new physics, the moun trigger, isolation, reconstruction, identification efficiencies has been studied using partial data collected by the CMS detector during pp collisions at the LHC in 2011. The dataset corresponds to an integrated luminosity of 2.31 fb-1. The efficiencies are measured as functions of the decay muon pseudo rapidity and transverse momentum based on "tag and probe" method. The efficiency measurements are compared to their estimated value from the Monte Carlo simulations so as to provide scaling factors to correct to the residual mis-modeling of the CMS muon performance. The comparison with simulations based on MC simulations opens a gate for validation of the detector simulation and optimization of selection strategies.
56

Evidence of a narrow structure in ϓ(1S)l⁺l⁻ mass spectrum and CMS Phase I and II silicon detector upgrade studies

Durgut, Suleyman 01 August 2018 (has links)
This thesis focuses on two parts, the evidence of a structure in a four lepton final state, and the CMS detector upgrade studies. The first part of the thesis focuses on an unexpected structure in Υ(1S)l+l− final state, where Υ(1S) → μ+μ−, l can represent a muon or an electron and m(l+l−) is required to be below the Υ(1S) mass. Using an integrated luminosity of 25.6 fb−1 recorded in proton-proton collisions at √s = 7 TeV and √s = 8 TeV with the CMS detector at the CERN LHC, an excess in the mass distribution near 18.5 GeV of Υ(1S)l+l− is found. The mass of this enhancement is found out to be 18.4 ± 0.1 (stat.) ± 0.2 (syst.) GeV in the Υ(1S)μ+μ− channel, and 18.5 ± 0.2 (stat.) ± 0.2 (syst.) GeV in the Υ(1S)e+e− channel. For the two results combined, the enhancement is found out to be 18.4 ± 0.1 (stat.) ± 0.2 (syst.) GeV with a local statistical significance of 4.9 standard deviations and a global significance, after taking into account the look-elsewhere-effect, of 3.6 standard deviations. The width of the observed enhancement is consistent with the mass resolution of the CMS detector. The second part of the thesis focuses on detector upgrade studies for the silicon detector. The LHC has been increasing and will increase the luminosity and collision energy. Due to radiation damage and increasing data loss, the CMS detector underwent a Phase I upgrade in 2016/2017 and will undergo a Phase II upgrade in 2018/2019. In Phase I upgrade, silicon sensors and DC-DC converters were tested at Fermilab for the CMS Forward Pixel detector. For Phase II upgrade, a gantry robot system is built for module assemble at Fermilab for the CMS Outer Tracker detector.
57

Développement d'un système de scan automatique pour la détection des particules chargées dans OPERA et séparation des pions/muons de basse énergie

Royole-Degieux, P. 12 July 2005 (has links) (PDF)
L'expérience OPERA (Oscillation Project with Emulsion t-Racking Apparatus) se propose de vérifier les résultats de Super-Kamiokande, tout en détectant l'apparition de neutrino tau dans un faisceau originellement "pur" en neutrino muonique, révélée par la topologie caractéristique de la désintégration du tau. La cible d'OPERA est constituée de murs de briques qui sont une alternance de feuilles de plomb et d'émulsions. Les émulsions sont des trajectographes de grande précision (~1 micron) qui vont être utilisés en masse lors de l'expérience et leur analyse nécessite un système de scan automatisé dédié. Tout d'abord, cette thèse a consisté en la participation à la mise en place du premier laboratoire de scan en France. La précision obtenue est conforme aux exigences de l'expérience et la rapidité demandée sera atteinte dans quelques mois. Ensuite, la séparation des pions et des muons à basse énergie a étudiée. Les premiers résultats, montrant la possibilité d'une telle séparation, ont été exposés. Enfin, un programme de reconstruction de ces particules en fin de parcours a été développé et testé, tenant compte des performances de scan auparavant étudiées.
58

Etude de la production resonante de graviton de Kaluza-Klein dans ses desintegrations en paires de muons dans le modele de Ramdall-Sundrum aupres de l'experience D0 au Tevatron

Lahrichi, Nadia 02 July 2004 (has links) (PDF)
Dans cette thèse nous avons posé les premières contraintes sur les paramètres du modèle de dimensions supplémentaires de Randall-Sundrum, à savoir k/M_Pl qui est proportionnel au couplage du graviton aux champs du modèle standard et M_G qui est la masse du premier état excité du graviton. L'analyse du signal Monte Carlo est basée sur le générateur PYTHIA. Cette étude a permis de mettre en évidence et de rectifier une erreur dans le générateur PYTHIA grâce à l'élaboration d'un générateur indépendant dédié à cette analyse. Le lot de données utilisées pour l'analyse correspond à la période de prise des données effectuée par la collaboration Dzero au Tevatron allant de novembre 2002 à juillet 2003, qui correspond à une luminosité totale de 107,8 pb-1. La recherche du graviton dans ses désintégrations en paires de muons a permis de mesurer dans un premier temps la section efficace de production du boson Z multiplié par le rapport d'embranchement du Z en deux muons.
59

Open Heavy Flavor Measurement at Forward Angles for Cu+Cu Collisions at Center of Mass NN Collision Energy 200 GeV

Garishvili, Irakli 01 December 2009 (has links)
The main purpose of Relativistic Heavy Ion Collider (RHIC) program is to study the Quark-Gluon Plasma (QGP), a deconfined state of matter believed to be created in ultra-relativistic heavy ion collisions. Heavy quarks, expected to be produced during the earlier stages of heavy ion collisions, serve as an important probe of the QGP.‎ ‎The following dissertation presents measurements of single muons resulting from the semileptonic decay of heavy flavor quarks in the rapidity range of $1.4 < vertetavert < 1.9$ for Cu+Cu nuclei collisions at $sqrt{s_{NN}}=200$ GeV measured by the PHENIX experiment. Single muon spectra were measured for three different centrality classes (0 - 20 \% , 20 - 40 \%, 40 - 94 \%) within the $p_{T}$ range of 1.0 - 4.0 GeV/c.‎ ‎To calculate single muon spectra, a full background estimate was statistically subtracted from inclusive spectra of muon candidate tracks reconstructed in the PHENIX muon arms. The background was predicted and estimated with a ``Hadron Cocktail", a full-scale data-driven Monte Carlo simulation. The hadron cocktail approach was originally developed and implemented to measure single muon production for Run-5 p+p collisions. First, the relevant light hadrons are generated with a ``realistic'' input (ratios of different particle species and $p_{T}$ spectra). The generated tracks are then propagated through the PHENIX detector geometry using GEANT. At the last step, introduced and implemented specifically for this analysis, the simulated tracks were embedded into real events and finally reconstructed with the PHENIX muon arms reconstruction software. This was done to realistically reproduce detector performance due to effects caused by colliding heavy ions. The hadron cocktail method provides a much better alternative to the previously attempted purely data-driven peacemeal approaches which suffer from very large systematic uncertainties.‎ ‎Finally, using baseline single muon measurements for p+p collisions, nuclear modification factors for all of the above specified centralities have been measured. These are the first measurements of single muon spectra and nuclear modification factors at forward angles for any two heavy colliding ion systems.
60

Measurements of photon induced processes in CMS and forward proton detection at the LHC

Rouby, Xavier 26 September 2008 (has links)
High energy photon induced processes at the CERN Large Hadron Collider (LHC) constitutes a unique testing ground for physics within and beyond the Standard Model of Elementary Particles. Colliding protons can interact by the exchange of one or two high energy photons, leading to very clean final state topologies. Several issues related to the study of photon interactions at the LHC are addressed in this Thesis. The detection of forward scattered protons, after the photon exchange, requires near-beam detectors. Developments of edgeless sensor prototypes have been realised as possible solutions for such an application. A proper design of these detectors has required developing a dedicated simulator (Hector) for the transport of charged particles particles in beamlines. Finally, the analyses of detection in the CMS experiment of the photon-induced exclusive production of lepton pairs are presented. In view of application early from the LHC start-up, in particular for the absolute luminosity measurement – the fundamental parameter of the LHC.

Page generated in 0.0274 seconds