• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 28
  • 4
  • Tagged with
  • 91
  • 91
  • 62
  • 18
  • 13
  • 12
  • 12
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Skeletal muscle growth and maintenance depend on BMP signaling / La croissance et la maintenance des muscles squelettiques dépendent de la signalisation BMP

Schirwis, Elija 24 March 2014 (has links)
Les facteurs de croissance de la superfamille TGF-β jouent un rôle dans toutes les étapes de la myogenèse prénatale et régissent l'entretien des muscles adultes. Les protéines morphogénétiques osseuses (BMPs) sont membres de la sous-famille des TGF-β et sont à l’origine de signaux clés régulant le développement musculaire embryonnaire. Cette thèse étudie le rôle de la signalisation BMP dans les cellules souches musculaires, dénommées cellules satellites. J'ai montré qu’après la naissance les BMPs régulent la croissance des fibres musculaires dépendante des cellules satellites. Suite à l’inhibition de la voie BMP, j'ai observé que les précurseurs myogéniques deviennent quiescents et cessent de progresser vers la différenciation, tandis que le traitement avec BMP4 suffit pour réactiver leur programme myogénique. La signalisation BMP affecte aussi la taille du muscle indépendante des cellules satellites. J'ai observé que les BMPs fournissent un signal hypertrophique et protègent de l’atrophie musculaire suite à une dénervation. Dans les conditions précédentes, la voie BMP inhibe l'expression de l’ubiquitine ligase E3, Fbxo30. J'ai analysé l'interaction entre la myostatine et la signalisation BMP. La myostatine est un autre membre de la famille des TGF-β, mais elle se lie à des récepteurs différents de ceux des BMPs. En l'absence de myostatine, l’hypertrophie musculaire dépend entièrement de la signalisation BMP. La dénervation musculaire chez les souris déficientes en myostatine provoque une atrophie, aggravée par l’inhibition des BMPs. Par conséquent, la voie BMP est un signal hypertrophique essentiel dans le muscle adulte qui prédomine sur la signalisation de la myostatine. / Growth factors of the TGF-β superfamily play a role in all stages of prenatal myogenesis and govern adult muscle maintenance. Bone morphogenetic proteins (BMPs) are members of the TGF-β subfamily and are key signals that regulate embryonic and fetal muscle development. This work investigates the role of BMP signaling in muscle stem cells of the postnatal muscle, the satellite cells. I showed that BMPs regulate satellite cell-dependent growth of postnatal fibers and the generation of the satellite cell pool. After inhibition of BMP signaling, I observed that myogenic precursor cells become quiescent and fail to progress towards differentiation, whereas treatment with BMP4 on its own is sufficient to reactivate the myogenic program. BMP signaling also affects the size of the muscle in a satellite cell-independent manner. I found that BMPs provide a hypertrophic signal and protect from denervation-induced muscle atrophy. Under such condition, BMP signaling inhibits the expression of the E3 ubiquitin ligase Fbxo30. I further analyzed the interaction between myostatin and BMP signaling. Myostatin is another member of TGF-β superfamily, but myostatin and BMPs bind to different receptors for signaling. Large muscles in absence of myostatin entirely depend on the presence of BMP signaling. Denervation of muscle in myostatin mutant mice causes a strong muscle atrophy, which is aggravated by the inhibition of BMP signaling. Therefore, the BMP pathway is a fundamental hypertrophic signal in adult muscle and is dominant over myostatin signaling.
12

Cell and non-cell autonomous regulations of metabolism on muscle stem cell fate and skeletal muscle homeostasis / Rôle des régulations intrinsèques et extrinsèques du métabolisme sur le devenir des cellules souches musculaires et sur le maintien de l’homéostasie du muscle squelettique

Theret, Marine 20 November 2015 (has links)
A l’état basal, les cellules souches musculaires sont quiescentes. Après blessure, ces cellules s’activent, s’amplifient et se différencient afin de réparer les myofibres lésées. Cependant, une petite population de ces cellules myogéniques activées ne va pas entrer dans la voie de la myogenèse, mais va retourner en quiescence par un phénomène appelé auto-renouvellement. Cette étape est cruciale afin de maintenir une réserve de cellules souches musculaires tout au long de la vie. Mais, les mécanismes cellulaires et moléculaires régulant ce phénomène sont peu décrits dans la littérature. La régénération musculaire est composée d’une série d’évènements complexes et bien orchestrés selon une cinétique précise. Le challenge de son étude est donc de pouvoir distinguer les évènements les uns des autres, tout en sachant qu’ils sont interconnectés. Bien que les cellules souches musculaires aient un fort potentiel de régénération, elles ont besoin d’interagir avec d’autres cellules au cours de la régénération, notamment avec les macrophages qui ont un rôle prépondérant dans ce processus. Après une blessure, les monocytes circulants sont recrutés sur le site de lésion et se différencient en macrophages inflammatoires. Ensuite, ces macrophages changent leur statut inflammatoire et acquièrent un profil anti-inflammatoire. Plusieurs études in vitro ont suggéré un rôle pour le métabolisme et son régulateur principal, la kinase activée par l’AMP (AMPK), dans la résolution de l’inflammation et dans le devenir des cellules souches adultes. Ainsi, j’ai étudié l’influence extrinsèque (via les macrophages) et intrinsèque du métabolisme sur le devenir des cellules souches musculaires au cours de la régénération. Pour cela, j’ai utilisé divers modèles déficients pour l’AMPK1 dans le macrophage, dans la cellule souche musculaire et dans la myofibre qui m’ont permis d’établir des cultures primaires de macrophages et de cellules musculaires. Dans un premier temps, grâce à ces outils, nous avons pu démontrer le rôle primordial de l’AMPK dans la résolution de l’inflammation au cours de la régénération musculaire et dans l’acquisition des fonctions anti-inflammatoires des macrophages. Dans ce contexte, l’activation de l’AMPK est dépendante de la kinase CAMKK et régule la phagocytose, principal phénomène cellulaire permettant le changement de statut inflammatoire des macrophages. Ce travail a été publié en 2013 dans le journal Cell Metabolism. Ensuite, j’ai mis en évidence un lien entre le métabolisme et le devenir des cellules souches musculaires. La suppression de l’AMPK dans les cellules souches musculaires augmente leur auto-renouvellement. Cette modification du devenir des cellules souches est due à un changement de métabolisme similaire à l’effet Warburg observé dans les cellules souches cancéreuses, qui s’effectue via la modulation de l’activité de l’enzyme Lactate Déshydrogénase, enzyme clé de la glycolyse. En conclusion, j’ai pu mettre en évidence deux nouveaux rôles de l’AMPK dans le devenir des cellules souches musculaires, établissant un lien de causalité entre métabolisme, inflammation et devenir des cellules souches. / During skeletal muscle regeneration, muscle stem cells activate and recapitulate the myogenic program to repair the damaged myofibers. A subset of these cells does not enter into the myogenesis program but self-renews to return into quiescence for further needs. Control of muscle stem cell fate choice is crucial to maintain homeostasis but molecular and cellular mechanisms controlling this step are poorly understood. A difficulty of understanding muscle stem cell self-renewal is that skeletal muscle regeneration is a coordinated and non-synchronized process. Various and dissociated molecular and cellular mechanisms regulate muscle stem cell fate. Indeed, skeletal muscle regeneration requires the interaction between myogenic cells and other cell types, among which the macrophages. Macrophages infiltrate the muscle and adopt distinct and sequential phenotypes. They act on the sequential phases of muscle regeneration and resolving the inflammation by skewing their inflammatory profile to an anti-inflammatory state. Some in vitro studies suggested a role for the metabolism and the AMP-activated protein Kinase (AMPK), the master metabolic regulator of cells, in both inflammation and stem cell fate. Thus, I investigated the role of metabolism on muscle stem cell fate within the muscle stem cells (cell autonomous regulations) and through the action of macrophages (non-cell autonomous regulations) during skeletal muscle regeneration. To analyze muscle stem cell fate, I used in vitro (macrophages and muscle stem cell primary cultures), ex vivo (isolated myofibers) and in vivo (using specific mice model deleted specifically for AMPK1 in the myeloid lineage, in muscle stem cells or in myofibers) experiments. First, I highlighted that macrophagic AMPK1is required for the resolution of inflammation during skeletal muscle regeneration and for the trophic functions of macrophages on muscle stem cell fate. Moreover, CAMKK-AMPK1 activation regulates phagocytosis, which is the main cellular mechanism inducing macrophage skewing. This work was published in 2013 in Cell Metabolism. Second, I demonstrated that depletion of myogenic AMPK1 tailors muscle stem cell metabolism in a LKB1 independent manner, orients their fate to the self-renewal by promoting metabolic switch from an oxidative to a glycolytic metabolism pathway, through the over activation of a new molecular target, which is a key enzyme for glycolysis: the Lactate Dehydrogenase. To conclude, during my thesis, I established two new crucial roles of AMPK1 in muscle stem cell fate choice, linking for the first time metabolism, inflammation and fate choice.
13

Rôle des exosomes sécrétés par le muscle strié squelettique au cours de la myogenèse et en situation d’insulino-résistance / Role of exosomes secreted by skeletal muscle during myogenesis and in situation of insulin resistance

Forterre, Alexis 19 December 2012 (has links)
Les exosomes sont des nanovésicules de 30 à 100nm sécrétées dans le milieuextracellulaire par une grande majorité de types cellulaires. Entourés d’une bicouchelipidique similaire aux radeaux lipidiques, ils contiennent des protéines, de l’ARNm et desmicroARNs. Récemment, il a été montré que les exosomes pourraient participer auxdialogues moléculaires inter-organes, au même titre que les protéines solubles (hormones etcytokines). Au cours de cette thèse, nous avons émis l’hypothèse que le muscle squelettiquepourrait utiliser les exosomes comme mode de communication intercellulaire, en plus desmyokines qu’il sécrète. Nous avons montré en couplant des techniques de microscopieélectronique, de génomique, de biologie cellulaire et moléculaire, et d’analysesprotéomiques, que le muscle était capable de sécréter des exosomes, dont la compositionvariait au cours de la myogenèse. De plus, nous avons montré que les exosomes sécrétéspar les cellules prolifératrices et différenciées avaient des rôles distincts au cours de ladifférenciation myogénique, via le transfert des microARNs notamment.En parallèle, nous nous sommes intéressés aux exosomes sécrétés par le musclesquelettique en situation d’insulino-résistance induite par du palmitate. En utilisant unedouble approche in vitro et in vivo, nous avons montrés que les exosomes sécrétés par lacellule musculaire insulino-résistante ont une morphologie et une composition luminalemodifiée. Enfin, ces exosomes sécrétés sembleraient transmettre un signal délétère àd’autres cellules musculaires différenciées, et aux autres tissus insulino-sensibles, comme lepancréas. / Exosomes are nanovesicles from 30 to 100nm, secreted into the extracellular spaceby a large majority of cell types. Surrounded by a lipid bilayer similar to lipid rafts, theycontain proteins, mRNA and microRNAs. Recently, it has been shown that exosomes maybe involved in inter-organs dialogues, as well as soluble proteins (hormones and cytokines).In this thesis, we hypothesized that skeletal muscle could use exosomes asintercellular communication mode, in addition to myokines. We have shown by couplingelectron microscopy techniques, genomics, molecular and cellular biology, and proteomicanalyzes, that the muscle was able to secrete exosomes, whose composition varied duringmyogenesis. In addition, we have shown that exosomes secreted by proliferating anddifferentiated cells have distinct roles during the myogenic differentiation, especially throughthe transfer of microRNAs. In parallel, we are interested in exosomes secreted by insulin resistant skeletalmuscle, induced by palmitate. Using a dual approach in vitro and in vivo, we have shown thatexosomes secreted by insulin-resistant muscle cells have a morphology and a luminalcomposition modified. Finally, these exosomes secreted seem to transmit a deleterioussignal to other differentiated muscle cells, and other insulin-sensitive tissues such as thepancreas.
14

Role of mTOR kinase activity in skeletal muscle integrity and physiology / Rôle de l'activité kinase de mTOR dans l'intégrité et la physiologie du muscle squelettique

Zhang, Qing 30 March 2015 (has links)
Pas de résumé en français disponible. / Pas de résumé disponible.
15

Rôle du récepteur nucléaire Rev-erb-α dans la fonction du réticulum sarcoplasmique du muscle squelettique : implications physiologiques et pathologiques / Role of the nuclear receptor Rev-erb-α in the function of the sarcoplasmic reticulum of skeletal muscle : physiological and pathological implications

Boulinguiez, Alexis 05 April 2019 (has links)
Au sein du muscle squelettique, le réticulum sarcoplasmique occupe une place essentielle dans la régulation de l’homéostasie calcique et de la contraction musculaire. En particulier, le transporteur calcique SERCA, situé à la membrane du réticulum endoplasmique permet de reconstituer le contenu calcique réticulaire suite à une contraction musculaire. Dans le muscle squelettique, l’activité de SERCA est contrôlée par un peptide inhibiteur spécifique appelé la myoréguline. Nous nous intéressons au rôle du récepteur nucléaire Rev-erb-α, un répresseur de transcription connu pour favoriser la fonction musculaire et dont l’activité peut être modulée par des ligands pharmacologiques. Nos résultats montrent que Rev-erb-α réprime l’expression de la myoréguline en se fixant sur son promoteur, ce qui a pour conséquence l’augmentation de l’activité de SERCA et la hausse du contenu calcique réticulaire. Un traitement avec un agoniste de Rev-erb-α, le SR9009, améliore l’homéostasie calcique et la contractilité musculaire de souris mdx/utr+/-, un modèle de la myopathie de Duchenne. Par ailleurs, le réticulum endoplasmique est le siège de la conformation des protéines de la voie sécrétoire. Des altérations de la conformation protéique provoquent un stress réticulaire et le déclenchement de la réponse aux protéines mal-conformées qui peut conduire jusqu’à l’apoptose. Il est décrit que le stress réticulaire est un phénomène impliqué dans l’activation de la cellule satellite musculaire suite à une blessure. Nous avons établi que Rev-erb-α, en augmentant l’interaction entre le réticulum endoplasmique et la mitochondrie accroit l’activation de la réponse aux protéines mal-conformées et l’apoptose de cellules satellites activées, ce qui pourrait impacter le potentiel de régénération musculaire. En conclusion, nous avons identifié Rev-erb-α comme un modulateur de la fonction du réticulum endoplasmique dans le muscle squelettique. Dans le futur, des thérapies ciblant spécifiquement Rev-erb-α pourraient être développées dans le cadre de pathologies musculaires chez l’Homme. / Within skeletal muscle, the sarcoplasmic reticulum plays an essential role in the regulation of calcium homeostasis and muscle contraction. In particular, the SERCA transporter, located at the membrane of the endoplasmic reticulum, by pumping calcium from cytosol from reticular lumen, allows the reticular calcium content to be reconstituted following muscle contraction. In skeletal muscle, SERCA activity is controlled by a specific inhibitory peptide called myoregulin. We are interested in the role of the nuclear receptor Rev-erb-α, a transcription repressor known to promote muscle function and whose activity can be modulated by pharmacological ligands. Our results show that Rev-erb-α represses the expression of myoregulin by binding to its promoter, which results in an increase in SERCA activity and an increase in reticular calcium content. Treatment with a Rev-erb-α agonist, SR9009, improves calcium homeostasis and muscle contractility in mdx/utr+/- mice, a model of Duchenne myopathy. In addition, the endoplasmic reticulum is the site of protein conformation of the secretory pathway. Alteration in protein conformation causes reticular stress and triggers the unfolded protein response that can lead to apoptosis. It is described that reticular stress is a phenomenon involved in the activation of skeletal muscle satellite cell following an injury. We have established that Rev-erb-α, by increasing the interaction between endoplasmic reticulum and mitochondria enhances the activation of unfolded protein response and apoptosis of activated satellite cells, which could impact the muscle regeneration capacity. In conclusion, we have identified Rev-erb-α as a modulator of endoplasmic reticulum function in skeletal muscle. In the future, specific Rev-erb-α targeting therapies may be developed for human muscle diseases.
16

Déterminants mitochondriaux de l'oxydation des acides gras : modulation par l'entraînement, l'hypoxie et un agoniste PPAR-*

Henrionnet, Alexandra 27 April 2011 (has links) (PDF)
La plasticité mitochondriale à l'égard de l'oxydation de substrats, et sa participation à la transition métabolique ont été étudiées dans deux conditions: l'exposition chronique à l'hypoxie et l'entraînement en endurance, connues comme modulatrices de la préférence de substrats. Ainsi l'affinité pour le palmitoyl carnitine est augmentée par l'hypoxie et la restriction calorique alors qu'au contraire le flux maximal de palmitoyl CoA (PCoA) semble freiné par l'hypoxie. Quant aux effets de l'entraînement, malgré une amélioration du temps limite de course à intensité sous-maximale et une augmentation des capacités oxydatives globales, nous ne retrouvons pas de facilitation de l'oxydation du PCoA. Par ailleurs, on observe une augmentation des messagers PPAR-delta et d'UCP-3 en réponse à une exposition aigue à l'hypoxie. Le rôle de PPAR-delta sur la modulation de l'utilisation de substrats par la mitochondrie a aussi été envisagé en utilisant un agoniste pharmacologique de PPAR-delta, le GW 742. Celui-ci, permet d'améliorer l'efficacité catalytique du complexe enzymatique CPT-1 tout en limitant l'oxydation du pyruvate, également diminuée dans les muscles oxydatifs au cours de la restriction calorique. Le traitement par GW 742, s'il limite l'altération de l'efficacité catalytique de CPT-1 observée en hypoxie, ne permet pas de rétablir, un niveau d'oxydation en PCoA similaire à celui observé en situation contrôle. Le GW 742 s'est aussi montré capable de restaurer le flux en PCoA altéré par l'entraînement, même si la fonction du transport CPT-1 reste limitante devant l'augmentation du potentiel oxydatif induit par l'entraînement. Par ailleurs, nous n'avons pas retrouvé de relation étroite entre les variations d'affinité en PCoA et la performance aérobie sous-maximale, pourtant influencée par la capacité à oxyder préférentiellement les lipides. Enfin, la diminution du flux en pyruvate associée à l'augmentation de l'utilisation des acides gras à longue chaîne observée lors du traitement par GW 742 ou au cours de la restriction calorique pose la question du rôle joué par une cible particulière de PPAR-delta sur la mitochondrie, la protéine découplante UCP-3.
17

Rôle des exosomes sécrétés par le muscle strié squelettique au cours de la myogenèse et en situation d'insulino-résistance

Forterre, Alexis 19 December 2012 (has links) (PDF)
Les exosomes sont des nanovésicules de 30 à 100nm sécrétées dans le milieuextracellulaire par une grande majorité de types cellulaires. Entourés d'une bicouchelipidique similaire aux radeaux lipidiques, ils contiennent des protéines, de l'ARNm et desmicroARNs. Récemment, il a été montré que les exosomes pourraient participer auxdialogues moléculaires inter-organes, au même titre que les protéines solubles (hormones etcytokines). Au cours de cette thèse, nous avons émis l'hypothèse que le muscle squelettiquepourrait utiliser les exosomes comme mode de communication intercellulaire, en plus desmyokines qu'il sécrète. Nous avons montré en couplant des techniques de microscopieélectronique, de génomique, de biologie cellulaire et moléculaire, et d'analysesprotéomiques, que le muscle était capable de sécréter des exosomes, dont la compositionvariait au cours de la myogenèse. De plus, nous avons montré que les exosomes sécrétéspar les cellules prolifératrices et différenciées avaient des rôles distincts au cours de ladifférenciation myogénique, via le transfert des microARNs notamment.En parallèle, nous nous sommes intéressés aux exosomes sécrétés par le musclesquelettique en situation d'insulino-résistance induite par du palmitate. En utilisant unedouble approche in vitro et in vivo, nous avons montrés que les exosomes sécrétés par lacellule musculaire insulino-résistante ont une morphologie et une composition luminalemodifiée. Enfin, ces exosomes sécrétés sembleraient transmettre un signal délétère àd'autres cellules musculaires différenciées, et aux autres tissus insulino-sensibles, comme lepancréas.
18

Les cellules souches dérivées du muscle (MDSC) isolement dans deux modèles gros animaux et évaluation comme candidates à la thérapie de la Dystrophie Musculaire de Duchenne (DMD) /

Fornasari, Benoît Chérel, Yan. Rouger, Karl. January 2008 (has links)
Reproduction de : Thèse de doctorat : Biologie, Médecine, Santé. Aspects moléculaires et cellulaires de la biologie : Nantes : 2008. / Bibliogr.
19

Implication des céramides dans l'atrophie musculaire

De Larichaudy, Joffrey 04 April 2012 (has links) (PDF)
Le muscle squelettique fait preuve d'une remarquable plasticité en réponse aux changements physiologiques, comme l'activité physique, et aux situations pathologiques. Il subit notamment une atrophie sévère lors de la cachexie qui accompagne diverses pathologies chroniques comme le cancer, le SIDA, etc. L'atrophie musculaire est aussi une composante de la sarcopénie qui survient lors du vieillissement normal, et se caractérise par un déclin de la force et de la masse musculaire. L'atrophie musculaire, qui entraîne une augmentation de la mortalité et diminue l'efficacité des traitements, constitue donc un problème de santé majeur.La fonte musculaire se caractérise par une altération de l'équilibre entre synthèse et dégradation protéiques dans les fibres adultes. Des taux particulièrement élevés de cytokines circulantes, dont le TNFα, qui affectent l'homéostasie du muscle via différentes voies de signalisation, semblent être à l'origine de l'atrophie. Les mécanismes de la réponse atrophique musculaire à ces taux circulants élevés sont cependant mal définis. Le TNFα a des effets complexes. Il peut activer de multiples voies de signalisation, parmi lesquelles l'induction de la synthèse de sphingolipides, et plus particulièrement de céramides, par la voie de novo et par l'activation des sphingomyélinases. Au niveau musculaire, les céramides sont connus pour leurs effets sur la signalisation de l'insuline, sur l'apoptose et sur la différenciation myogénique. Par contre, leur implication dans le cadre de l'atrophie n'avait jamais été prise en compte. L'objectif de ce travail a été dans un premier temps de démontrer le rôle des céramides dans l'atrophie. Dans un deuxième temps, nous avons caractérisé la voie de signalisation par laquelle l'augmentation intramusculaire de céramide induite par le TNFα aboutit à une chute de la synthèse protéique, couplée à une augmentation de la protéolyse. Dans ce but, nous avons mis au point des modèles in vitro d'atrophie, impliquant des myotubes traités par des concentrations physiologiques de TNF. Nous avons en parallèle étudié un modèle in vivo de cachexie induite chez la souris par l'implantation d'un adénocarcinome C26. L'analyse des sphingolipides nous a permis de montrer l'augmentation des taux de céramides concomitante à l'atrophie générée in vitro et in vivo. Le rôle des céramides dans l'atrophie a été démontré par l'effet protecteur des inhibiteurs de leur synthèse, dans les modèles in vitro et in vivo. Nous montrons de plus dans un modèle in vitro que les effets atrophiques des céramides sont dus à l'inhibition de la voie de signalisation Phospholipase D/mTOR/Akt. Nos résultats nous ont permis de prouver le rôle des sphingolipides dans le contrôle de l'homéostasie protéique du muscle. La modulation du métabolisme des sphingolipides apparaît donc comme une nouvelle cible thérapeutique prometteuse dans le traitement de la perte musculaire associée à diverses pathologies.
20

Identification and isolation of multipotent stromal cells from human skeletal muscle / Identification et isolement de cellules stromales multipotentes du muscle squelettique humain

Downey, Jennifer January 2013 (has links)
Abstract: Human skeletal muscle is an essential source of various cellular progenitors with potential therapeutic perspectives. Muscle-resident mesenchymal stromal cells (mrMSCs) are thought to be involved in the development of several regenerative disorders such as fatty degeneration, heterotopic ossification and fibrosis. Identifying the cell population responsible for these pathologies will help better understand the underlying mechanisms and lead to more efficient treatment. We first developed an isolation method and culture conditions for the proliferation and maintenance of the adherent fraction of human skeletal muscle derived cells. To further enrich the cell population as multipotent progenitors, we used fluorescent-activated cell sorting (FACS) and known mesenchymal stromal cell (MSC) markers. The enriched cell populations obtained were tested for their multipotent capabilities towards the osteogenic, adipogenic and chondrogenic lineages. The CD73 + CD 105+ CD90- subset of human skeletal muscle adherent cells displayed robust multipotence to all three lineages under the appropriate differentiation conditions. Clonal differentiation assays confirmed that all three lineages stem from a single multipotent progenitor. Furthermore, this cell subset was able to differentiate into brown adipocyte-like cells, expressing UCP1 at the RNA and protein levels following prolonged stimulation with rosiglitazone (ROS). This result suggests that this cell subset could also represent a human cell model for brown adipogenesis. The cell isolation and enrichment method presented in this thesis represent a novel technique to obtain human mrMSCs. This method holds great promise for future clinical applications with the enriched cell populations since they are expanded in a defined medium, which supports inter-laboratory reproducibility. Furthermore, the phenotypic markers chosen for the FACS isolation are well conserved amongst donors in the proposed conditions, limiting donor-to-donor variability.||Résumé: Le muscle squelettique humain est une source essentielle de cellules progénitrices ayant plusieurs applications thérapeutiques potentielles. Les cellules stromales mésenchymateuses du muscle squelettique humain (hmrMSCs) semblent être impliquées dans des pathologies telles l’ossification hétérotopique, la dégénérescence graisseuse et la fibrose. L’identification de la population cellulaire à l’origine de ces pathologies permettrait de mieux comprendre les mécanismes derrières celles-ci et aiderait à la création de traitements plus efficaces. Nous avons d’abord mis au point une méthode d'isolement et déterminer des conditions de culture pour la prolifération et le maintien en culture de la fraction cellulaire adhérente dérivée du muscle squelettique humain. Par le biais de la cytométrie en flux et des marqueurs connus des cellules stromales mésenchymateuses (MSC), nous avons pu enrichir les cellules stromales multipotentes. Le potentiel ostéogénique, adipogénique et chondrogénique des populations cellulaires enrichies a été évalué par des essais de différenciation. La sous-population de cellules CD73[indice supérieur +]CD105[indice supérieur +]CD90[indice supérieur -] a montré une multipotence robuste sur les trois lignées étudiées. Des essais de différenciation clonale ont confirmés que les trois lignées obtenues proviennent tous d’un progéniteur multipotent commun. De plus, cette sous-population cellulaire avait la capacité de se différencier en cellule de gras brun, démontrée par une expression élevée d’UCP1 au niveau génique et protéique suivant une stimulation continue avec le rosiglitazone (ROS). Ce résultat suggère que cette sous-population cellulaire pourrait également représenter un modèle pour l’adipogenèse vers le gras brun. La méthode d’enrichissement présentée représente une nouvelle technique afin d’obtenir des hmrMSCs. Elle semble prometteuse pour de futures applications cliniques employant ces cellules, étant donné qu’elles sont amplifiées dans un milieu défini permettant une reproductibilité interlaboratoire. De plus, les marqueurs de phénotype choisis pour l’enrichissement par cytométrie en flux sont bien conservés entre individus, limitant la variabilité inter-donneur.[symboles non conformes]

Page generated in 0.037 seconds