• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 29
  • 25
  • 18
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 255
  • 255
  • 170
  • 94
  • 44
  • 39
  • 36
  • 34
  • 29
  • 26
  • 23
  • 23
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Carbonic anhydrase activity and its role in membrane H+-equivalent transport in mammalian ventricular myocytes

Villafuerte, Francisco C. January 2007 (has links)
Carbonic anhydrases (CAs) are fundamental and ubiquitous enzymes that catalyse the reversible hydration of CO<sub>2</sub> to form HCO<sub>3</sub><sup>-</sup> and H<sup>+</sup> ions. Evidence derived from heterologous expression systems has led to the proposal of a novel role for CA in intracellular pH regulation, where its physical and functional coupling to membrane H<sup>+</sup> -equivalent transport proteins appears to enhance their activity. It has yet to be established whether such a functional association occurs naturally in wild-type cells. Additional evidence on CA activity in-vitro, has also suggested that certain CA isoforms are regulated by physiological changes of pH, an effect that may then affect their ability to enhance H<sup>+</sup> -equivalent transport. No information, however, exists on the pH sensitivity of CA in intact cells. Finally, pharmacological inhibition of CA activity has been reported previously for various compounds, in addition to those designed specifically as CA inhibitors. It is possible that some compounds, currently used to inhibit membrane H<sup>+</sup> transport, may also target CA. The present work has examined functional aspects of CA activity in ventricular myocytes isolated enzymically from rat heart, focusing on the potential role of C A in controlling sarcolemmal Na<sup>+</sup>/H<sup>+</sup> exchange (NHE) and sarcolemmal Na<sup>+</sup>-HCO<sub>3</sub><sup>-</sup> cotransport (NEC). NHE and NEC activity were estimated from the rate of recovery of intracellular pH (pH<sub>i</sub>), following an intracellular acid load in myocytes loaded with carboxy-SNARF-1 (a pH-sensitive fluorescent dye, used to measure pH<sub>i</sub>)). In other experiments, in-vitro CA activity was assessed from the time-course of pH change after addition of CO<sub>2</sub>-saturated water to a buffered solution containing either CA II or a cardiac homogenate. In further experiments, intracellular CA activity was assessed from the rate of CO<sub>2</sub>-induced fall of pH<sub>i</sub>. Three major results emerged, (i) In intact myocytes, CA activity doubles acid extrusion on sarcolemmal NBC, but has no effect on NHE activity. Facilitation of NBC activity by CA is likely to be mediated by an intracellular CA isoform. (ii) In-vitro and intracellular CA activity displays strong pH-dependence within the physiological pH range, activity declining with a fall of pH. (iii) The NHE inhibitor, cariporide, the bicarbonate transport inhibitors DIDS (4,4'- diisothiocyanatostilbene-2,2'-disulphonic acid) and S0859 (an experimental compound from Sanofi-Aventis), and the aquaporin blocker, pCMBS (p-chloromercuribenzene sulphonate), all showed strong inhibitory activity towards CA in-vitro, but had no effect on intracellular CA activity. Overall, the work provides the first clear demonstration of a functional role of CA activity in H<sup>+</sup>-equivalent transport in a wild-type cell. CA thus represents an important regulatory mechanism of H<sup>+</sup> -equivalent transport. The pH sensitivity displayed by in-vitro and intracellular CA activity may also have significant functional consequences for pH<sub>i</sub> regulation. CA inhibition by various membrane transport inhibitors highlights the need for careful drug and experimental design, to avoid secondary inhibition of CA activity and its side-effects. The present work thus provides insight into the functional roles of CA, plus important new information on the enzyme's pharmacological properties.
22

Control of fibroblast contamination in primary rat skeletal muscle cell cultures: Effects of an epidermal growth factor linked cytotoxin

Pierce, Paul Randall, 1951- January 1988 (has links)
The in vitro study of muscle cell growth is hampered by the presence of non-muscle cells, particularly fibroblasts. The heterobifunctional cross-linking agent, N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) has been used to create a novel "toxic growth factor" to address the problem. Epidermal growth factor (EGF), which stimulates fibroblast but not satellite cell proliferation, was conjugated via SPDP to a potent ribosome inhibitor, pokeweed antiviral protein (PAP). By preferentially binding to fibroblasts, it was hoped that EGF-PAP could cytotoxically eliminate fibroblasts from primary cultures of rat skeletal muscle satellite cells. While EGF-PAP did prove to be a fibroblast cytotoxin, it could not completely eliminate them from cell cultures. Low dose-time exposures improved the ratio of multinucleated cells to mononucleated cells (percent fusion) by up to 66% over controls, but increased concentrations, or durations of EGF-PAP treatment, proved detrimental to satellite cell growth and/or differentiation.
23

GM-CSF and eosinophil survival in asthma

Hallsworth, Matthew Pearce January 1999 (has links)
No description available.
24

FOXO3a in vascular smooth muscle cell apoptosis

Fellows, Adam Lee January 2018 (has links)
FOXO3a is a pro-apoptotic transcription factor which shows increased activation in vascular smooth muscle cells (VSMCs) of advanced atherosclerotic plaques, specifically within the intimal layer. Since VSMC apoptosis plays a crucial role in the pathophysiology of atherosclerosis, we investigated the mechanisms underlying FOXO3a-mediated cell death in this particular cell type. We aimed to characterise a novel VSMC system (FOXO3aA3ERTM) and use these cells to validate MMP-13 and TIMP3 as new FOXO3a target genes. Also, we sought to determine the mechanisms of FOXO3aA3ERTM-mediated VSMC apoptosis, particularly regarding MMP-13 and TIMP3, potential MMP-13 substrates in the extracellular matrix and the precise apoptotic signalling involved. Furthermore, we aimed to investigate whether VSMC-specific activation of FOXO3aA3ERTM in mouse affects vascular remodelling during injury and whether this is reliant on MMP-13. Lastly, we aimed to address if endogenous FOXO3a upregulates MMP-13 in mouse and human VSMCs. Our laboratory has created a transgenic rat VSMC line which stably expresses an inducible FOXO3a mutant allele known as FOXO3aA3ERTM and previous microarray experiments identified matrix metalloproteinase 13 (MMP-13) as a potential novel FOXO3a target gene. Initially, we described several key features of the FOXO3aA3ERTM VSMCs used throughout this thesis, and subsequently demonstrated that MMP-13 is a bona fide target whose expression is rapidly upregulated upon FOXO3a activation, leading to markedly higher levels of protein, cleavage and proteolytic capacity. This induction of MMP-13 was responsible for the vast majority of FOXO3a-mediated apoptosis which was accompanied by prominent degradation of fibronectin, a glycoprotein found in the extracellular matrix. However, we could not identify a terminal apoptotic pathway. FOXO3a also downregulated the endogenous MMP inhibitor TIMP3, the recombinant protein of which reduced both MMP-13 proteolysis and FOXO3a-mediated apoptosis. Activation of FOXO3aA3ERTM in the VSMCs of medium and large arteries in mice resulted in heightened expression of MMP-13 in the vessel wall, which contributed to enhanced neointimal formation during carotid ligation. Finally, endogenous FOXO3a activation leads to increased MMP-13 expression in human VSMCs, but not mouse. Overall, we have shown that FOXO3a promotes VSMC apoptosis through MMP-13 both in vitro and in vivo, a novel pathway that has important implications for the pathogenesis and treatment of vascular disease.
25

The Role of Modified UNC-68 in Age-related Caenorhabditis elegans Muscle Function Loss

Forrester, Frances M. January 2018 (has links)
Age-dependent loss of body wall muscle function and locomotion has been observed in C. elegans, however its cause has yet to be elucidated. Utilizing biochemical techniques and calcium imaging, we demonstrate that aberrant calcium (Ca2+) release via the ryanodine receptor (RyR) homologue UNC-68 contributes to age-dependent muscle weakness in C. elegans. We show that UNC-68 comprises a macromolecular complex bearing FKB-2, a C. elegans immunophilin with high homology to the stabilizing subunit calstabin (calcium channel stabilizing binding protein, or FKBP12). Furthermore, we demonstrate that as the nematode ages, UNC-68 is oxidized and depleted of FKB-2, resulting in “leaky” channels, depleted SR calcium stores, and a reduction in body wall muscle Ca2+ transients at baseline. These perturbations resulted in a motility phenotype, where fkb-2(ok3007) worms harboring a deletion mutation that abolishes FKB-2 binding to the UNC-68 macromolecular complex suffered from poor muscle performance and exercise fatigue in swimming trials. Moreover, pharmacological interventions inducing oxidization of UNC-68 and depletion FKB-2 from the channel independently cause reduced body wall muscle Ca2+ transients, strongly suggesting that UNC-68 oxidation and FKB-2 depletion contribute to muscle function loss observed in aging. UNC-68 oxidation was found to correlate with lifespan, happening earlier in short-lived mitochondrial electron transport chain strains and later in long-lived worms. Finally, preventing FKB-2 depletion from the UNC-68 macromolecular complex in aged C. elegans using the Rycal drug S107 improved muscle Ca2+ transients. Taken together, our data implicate UNC-68 dysfunction in the underlying mechanism of muscle function loss in C. elegans, analogous to observations made of RyR1 dysfunction in aged mammalian skeletal muscle, and describes for the first time a potential role for FKB-2 in C.elegans physiology.
26

Senescent vascular smooth muscle cells contribute towards inflammation in atherosclerosis through multiple mechanisms

Gardner, Sarah Elizabeth January 2014 (has links)
No description available.
27

Generation of epicardium and epicardium-derived coronary-like smooth muscle cells from human pluripotent stem cells

Iyer, Dharini January 2015 (has links)
No description available.
28

Mitochondrial function in atherosclerosis and vascular smooth muscle cells

Reinhold, Johannes January 2019 (has links)
Atherosclerosis is the leading cause of death in the Western world. Although mitochondrial DNA (mtDNA) damage has been implicated in atherosclerosis, it is unclear whether the damage is sufficient to impair mitochondrial respiration, and mitochondrial dysfunction has not been demonstrated. Treatment of vascular smooth muscle cells (VSMCs) with an atherogenic lipid, oxidised low-density lipoprotein (OxLDL), dose dependently decreased basal and maximal respiration and fat-feeding of apolipoprotein E deficient (ApoE-/-) mice reduced mitochondrial DNA copy number relative to nuclear DNA in aortas. Mitochondrial respiration of ApoE-/- mouse aortas, assessed through a 24-well Seahorse extracellular flux analyser, was not affected prior to the development of atherosclerotic plaques. Developed human carotid atherosclerotic plaques were dissected into defined regions including healthy media, shoulder region, fibrous cap and core and their respiration was investigated. The respiratory reserve capacity (RRC) of the shoulder region was similar to the media. However, the cap RRC was significantly reduced compared to healthy media. In contrast, the extracellular acidification rates (ECAR) of the media, shoulder, cap and core regions were similar. In addition, mtDNA copy number was significantly reduced in tissues derived from human plaques compared to healthy arteries and expression of complexes I and II of the electron transfer chain (ETC) were significantly reduced in plaque VSMCs. OxLDL induced mitophagy in human VSMCs and plaque VSMCs demonstrated increased levels of mitophagy without compensatory upregulation of proteins involved in mitochondrial biogenesis. Understanding the role of mitochondrial metabolism and signalling is important for our understanding of disease progression and may lead to future therapeutic targets.
29

Mutagenic and purification studies of the carboxyl tail of ClC-1, the skeletal muscle chloride channel

Simpson, Bronwyn Jayne January 2002 (has links)
ClC-1 is the major skeletal muscle chloride channel and is essential for re-establishing the resting membrane potential of muscle cells after an action potential has occurred. Many mutations throughout the CLCN1 gene, which codes for the CIC-1 protein, have been demonstrated via characterisation in heterologous expression systems, to be causative mutations for either Dominant Myotonia Congenita or Recessive Generalised Myotonia. Recently, increasing numbers of myotonic mutations have been found in the carboxyl tail of CIC-1, which demonstrates its importance as a domain that is essential for the normal function of CIC-1 channels. Previous studies in our laboratory defined a region of 18 amino acids in the immediate post D13 segment of rat CIC-1, essential for the expression of functional channels. / thesis (PhDBiomedicalScience)--University of South Australia, 2002.
30

Endocrine control of proteolysis in cultured muscle cells

Hong, Dong-Hyun 09 August 1993 (has links)
Graduation date: 1994

Page generated in 0.0362 seconds