• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 12
  • 12
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Egg production, flight velocity and predation risk in birds

Veasey, Jake S. January 1999 (has links)
No description available.
2

SYNTHESIS AND CHARACTERIZATION OF BLUE LIGHT POLY(β-AMINO ESTER)S

Kohrs, Nicholas John 01 January 2018 (has links)
Volumetric muscle loss (VML) is a debilitating injury which results in full or partial loss of function. Current clinical options utilize tissue grafts and bracing to restore function. Tissue graft implantation oftentimes leads to serious complications, some of which end in graft rejection and thereby necessitate further surgeries and procedures. Polymeric scaffolds show promise as scaffolding systems due to their mechanical properties and overall degradation profiles. Scaffolds need appropriate mechanical properties, 10-60 kPa modulus, and overall degradation times, five days to two weeks, to initiate tissue regeneration. Poly(β-amino ester)s (PBAE), a class of synthetic polymers, act as a safe biocompatible material with overall degradation times that are suitable for healing; however, due to harmful ultraviolet light (UV) irradiation from common crosslinking methods, these scaffold systems cannot be synthesized in vivo. This research presents the development and characterization of blue light (BL) crosslinked PBAEs. BL PBAEs showed vastly higher swelling ratios, 300-400% increase; decreased mechanical strength, an average decrease of 877 kPa in compressive modulus and 431 kPa in tensile modulus; and prolonged degradation patterns, 22% average mass retention. BL PBAEs show mechanical properties and degradation profiles that could be used as a skeletal muscle scaffolds.
3

Functional recovery of a volumetric skeletal muscle loss injury using mesenchymal stem cells in a PEGylated fibrin gel seeded on an extracellular matrix

Merscham, Melissa Marie 26 April 2013 (has links)
This study investigated the effect of bone marrow derived mesenchymal stem cells (MSCs) in a PEGylated fibrin gel (PEG) seeded into a decellularized extracellular matrix (ECM) on recovery of skeletal muscle following a volumetric muscle loss (VML) injury. Six to nine month old male Sprague-Dawley rats were used in this study. Approximately one-third of the skeletal muscle mass of the lateral gastrocnemius (LGAS) was removed from the LGAS, which was immediately replaced with an acellular ECM of the same dimensions. Seven days after injury, animals were injected with one of four solutions: saline (SAL), MSCs (MSC), PEGylated fibrin hydrogel (PEG), or MSCs in PEG (PEG+MSC). Maximal isometric tetanic tension (Po) of the LGAS was assessed fifty-six days after VML injury, followed by histological evaluation. VML injury resulted in a functional impairment of the LGAS capable of producing 76.1± 4.9% of the force generated in the non-injured contralateral LGAS. Tetanic tension of the PEG+MSC treated group was significantly higher compared to all other treatment groups (p < 0.05), although specific tension (N/cm2) in the PEG+MSC group (79.7±4.0%) was only significantly higher compared to SAL (58.2±3.0) and PEG (64.0±2.1%) treated groups (p < 0.05). However, LGAS mass was significantly higher in the PEG+MSC group compared to all other groups (p < 0.05). These findings suggest the combination of the PEG+MSC did not lead to a significant increase in muscle function compared to MSC treatment alone, and demonstrates the importance of MSCs in skeletal muscle regeneration in VML injury models. However, as evident by the significant increase in LGAS mass, PEG+MSC treatment may lead to histological differences not evaluated in this study. Gross morphology of the repaired gastrocnemius was indistinguishable from the contralateral control. / text
4

Tissue Nanotransfection Strategies for the Treatment of Diabetic Neuropathy and Volumetric Muscle Loss

Clark, Andrew January 2020 (has links)
No description available.
5

MG53 improves regeneration of satellite cells and healing following volumetric muscle loss injury by decreasing fibrosis and modulating the inflammatory environment

Benissan-Messan, Dathe Z. 30 August 2022 (has links)
No description available.
6

Development and Validation of a Light Weight, Energy Dense, Ready to Eat (RTE) Bar

Heick, Jacob Wilhelm-Maria 01 December 2010 (has links) (PDF)
DEVELOPMENT AND VALIDATION OF A LIGHT WEIGHT, ENERGY DENSE, READY TO EAT (RTE) BAR Jacob Wilhelm-Maria Heick Providing additional calories in the form of an RTE bar to endurance athletes will increase performance and muscle re-synthesis, reduce muscle breakdown, and shorten recovery time. An RTE bar containing a blend of dairy proteins and carbohydrates will create a product with superior functionality, including bioactive and immunity enhancing properties from dairy derived ingredients. The protein will provide benefits in the form of easily digestible calories, essential amino acids and physical satiate. A formulation was developed and optimized, resulting in a final product that meets the required nutritional profile: 400kcal, 25grams protein per 100 gram serving size. The desired physical characteristics were achieved through processing by both conventional baking and freeze drying. The latter method improves the stability and functionality of the RTE bar. In order to meet the protein requirements of the RTE bar without compromising sensory properties, a unique protein source was developed. Using high concentrations of conventional protein sources like Whey Protein Concentrate (WPC) resulted in stale off-flavors and unappealing textures. Milk Protein Precipitate (MPP) was developed for this formulation. MPP is a curd-like ingredient created through the combined heat and acid precipitation of dairy proteins. MPP can be used effectively in high concentrations provides a subtle dairy flavor. MPP delivers a balance of casein and whey, similar to that found in milk. The effectiveness of the RTE bar formulation as a post exercise recovery food was evaluated in a human studies experiment conducted on the Cal Poly campus. The human subjects study utilized 34 Cal Poly students in a single-blind cross-over design experiment. The study compared the effects of this high protein RTE bar against a calorically equal carbohydrate bar. The bars were administered after subjects completed the pre-assigned hikes on three consecutive days. Following the cross-over design, subjects received the alternate bar in the second period of the experiment. Several blood markers involved in metabolism and inflammation were measured before and after the two treatment periods. No blood marker showed a statistically significant difference between bars, but several trends were observed. Body weight and fat percent were also unaffected by bar composition.
7

Designing Fibrin Microthread Scaffolds for Skeletal Muscle Regeneration

Grasman, Jonathan M 09 January 2015 (has links)
Volumetric muscle loss (VML) typically results from traumatic incidents; such as those presented from combat missions, where soft-tissue extremity injuries account for approximately 63% of diagnoses. These injuries lead to a devastating loss of function due to the complete destruction of large amounts of tissue and its native basement membrane, removing important biochemical cues such as hepatocyte growth factor (HGF), which initiates endogenous muscle regeneration by recruiting progenitor cells. Clinical strategies to treat these injuries consist of autologous tissue transfer techniques, requiring large amounts of healthy donor tissue and extensive surgical procedures that can result in donor site morbidity and limited functional recovery. As such, there is a clinical need for an off-the-shelf, bioactive scaffold that directs patient’s cells to align and differentiate into muscle tissue in situ. In this thesis, we developed fibrin microthreads, scaffolds composed of aligned fibrin material that direct cell alignment along the longitudinal axis of the microthread structure, with specific structural and biochemical properties to recreate structural cues lost in VML injuries. We hypothesized that fibrin microthreads with an increased resistance to proteolytic degradation and loaded with HGF would enhance the functional, mechanical regeneration of skeletal muscle tissue in a VML injury. We developed a crosslinking strategy to increase fibrin microthread resistance to enzymatic degradation, and increased their tensile strength and stiffness two- to three-fold. This crosslinking strategy enhanced the adsorption of HGF, facilitated its rapid release from microthreads for 2 to 3 days, and increased the chemotactic response of myoblasts twofold in 2D and 3D assays. Finally, we implanted HGF-loaded, crosslinked (EDCn-HGF) microthreads into a mouse model of VML to evaluate tissue regeneration and functional recovery. Fourteen days post-injury, we observed more muscle ingrowth along EDCn-HGF microthreads than untreated controls, suggesting that released HGF recruited additional progenitor cells to the injury site. Sixty days post-injury, EDCn-HGF microthreads guided mature, organized muscle to replace the microthreads in the wound site. Further, EDCn-HGF microthreads restored the contractile mechanical strength of the tissue to pre-injured values. In summary, we designed fibrin microthreads that recapitulate regenerative cues lost in VML injuries and enhance the functional regeneration of skeletal muscle.
8

Biomarcadores de caquexia reumatoide : uma abordagem metabolômica em modelo experimental de artrite

Alabarse, Paulo Vinicius Gil January 2016 (has links)
Base teórica: Artrite reumatoide (AR) é uma doença autoimune que afeta as articulações e progride de maneira simétrica e erosiva. Além dos achados articulares, pode ocorrer de perda muscular e síndrome da caquexia. Atualmente, não existe um marcador que sirva de preditor da síndrome de caquexia reumatoide. Estudos metabolômicos em pacientes com AR demonstram uma complexidade em encontrar um biomarcador para caquexia. Ademais, não há modelo experimental de caquexia descrito na literatura, mas o modelo de artrite induzida por colágeno (CIA) possui potencial de ser modelo de caquexia reumatoide. A partir deste modelo, pode-se fazer a busca por biomarcadores de caquexia reumatoide via metabolômica. Objetivo: Avaliar o modelo de CIA como modelo experimental de caquexia reumatoide. Avaliar o perfil metabólico da urina no modelo de CIA e correlacionar com parâmetros clínicos de caquexia reumatoide em busca de possíveis biomarcadores. Métodos: Camundongos machos DBA/1J foram induzidos (CIA; n=13) no dia zero e receberam reforço 18 dias após, e grupo mantidos saudáveis sem indução (CO; n=11). Nos dias 0, 18, 25, 35, 45, 55 e 65 após a indução, foram realizados: coleta de urinas; teste de desempenho físico; teste de locomoção espontânea; teste de força; medida do volume do edema da pata traseira; avaliação do escore clínico; pesagem; e avaliação da ingestão alimentar. Após os 65 dias, os animais foram eutanasiados e tecidos musculares (gastrocnêmio – GA; e tibial anterior – TA) foram dissecados para pesagem e realização da razão sarcoplasmática. Os dados foram analisados por ANOVA de duas vias, seguido de Bonferroni, ou teste t de Pearson, com significância a partir de um p<0,05. A urina coletada foi submetida à ressonância nuclear magnética (1D e 2D J-res). Os metabolitos foram identificados via Chenomx (1D) e pelo Birmingham Metabolite Library (BML; 2D J-res). Utilizou-se a o modelo estatístico de PCA, PLSDA e PLSR para criar ranqueamento de metabolitos (significância a partir de um p<0,05). Analizou-se as rotas metabólicas via Metaboanalyst a partir do ranqueamento de metabólitos obtidos. Os metabólitos obtidos foram filtrados para rotas metabólicas que ocorrem no músculo para identificação de potenciais biomarcadores de perda muscular. Resultados: O grupo CIA apresentou redução de até 24% na locomoção espontânea, de até 66% na força e de até 24% no teste de desempenho físico após 35 dias da indução, bem como redução no peso do GA (24%) e TA (25%), e relação sarcoplasmática (22 e 23%, respectivamente) em relação ao grupo CO. Os modelos estatísticos de PCA, PLSDA e PLSR, e o filtro pelas rotas metabólicas relacionadas com o músculo geraram uma lista de 28 metabólitos e relacionados com o desenvolvimento da doença, sendo eles: 3-metilhistidina, 4-aminobutirato, acetilcolina, arginina, aspartato, carnosina, creatina, creatinina, glutamina, histamina, histidina, isoleucina, leucina, metionina, lisina, mio-inositol, dimetilglicina, acetilalanina, acetilmetionina, pantotenato, fenilalanina, fosfocolina, fosfocreatina, piridoxina, sarcosina, succinilacetona, tiamina, e urocanato. Conclusão: Em concordância com os resultados de redução nos parâmetros de: massa muscular, locomoção espontânea, força e desempenho físico, somando-se a ausência de anorexia bem como mudança no peso, o modelo animal de CIA representa um modelo experimental próprio para caquexia reumatoide. A análise do perfil metabólico deste modelo permite sugerir 28 metabólitos relacionados ao processo de perda muscular, que podem vir a ser biomarcadores de caquexia reumatoide, objetivando prognóstico, diagnóstico e acompanhamento da síndrome. Destes metabólitos, os principais são pertencentes ao metabolismo de: histidina; arginina e prolina; glicina, serina e treonina; fosfocreatina, bem como outros aminoácidos e vitaminas do complexo B. / Background: Rheumatoid Arthritis (RA) is an autoimmune disease that affects the joints and has a symmetric development and it is erosive. Besides joint damage, it can develop muscle loss progress into cachexia syndrome. Currently, there is no marker that can predict it development in rheumatoid patients. Metabolomics in RA have shown to be complex to find out a biomarker for this syndrome. Also, there is no experimental model of cachexia described in literature yet; however the collageninduced arthritis (CIA) animal model seems to be a feasible model for rheumatoid cachexia. With this model, the research for a biomarker of rheumatoid cachexia can be done by metabolomics. Objectives: It will be evaluated if the CIA animal model can be also an animal model of rheumatoid cachexia. Afterwards, it will be evaluated a metabolic profile from urine of this animal model and correlate with clinical signs of rheumatoid cachexia to find out plausible biomarkers of it. Methods: Male DBA/1J mice were submitted to CIA (n=13), immunization occurred at day zero and a booster was performed 18 days after, and a healthy group with no induction (CO; n=11). At the 0,18, 25, 35, 45, 55 and 65 days after the first injection, it was done: urine collection; physical performance test; free exploratory locomotion test; strength test; hindpaw edema volume measurement; follow up disease development; weighted; and food intake. After the 65 days, animals were euthanized and muscle (gastrocnemious – GA; and tibial anterior – TA) were dissected, and weighted for sarcoplasmic ratio. Data were analyzed by two-way ANOVA followed by Bonferroni post hoc, and t-test of Pearson, and statistical critical limit was set for p<0.05. The collected urine was used for nuclear magnetic resonance (1D and 2D J-res). Metabolites were identified by Chenomx (1D) and by the Birmingham Metabolite Library (BML; 2D J-res). Statistical model were performed using PCA, PLSDA and PLSR to create a ranking list of the metabolites (statistical critical limit was set for p<0.05). It was analyzed the metabolic pathway by Metaboanalyst from the data of metabolite ranking list. Then, the metabolite list was filtered by the metabolic pathways that take place in muscle tissue, in order to identify plausible biomarkers of muscle loss. Results: CIA group has shown reduction in up to 24% of free locomotion fatigue, up to 66% of strength and up to 24% of endurance physical performance after 35 days of the induction, as well as a decrease in GA (24%) and TA (25%) weight, and sarcoplasmic ratio also reduced (22 and 23%, respectivamente) related to CO group. The PCA, PLSDA and PLSR statistical models, and the filter by metabolic pathways related to muscle provided a list of 28 metabolites related to disease development, as can be listed: 3-methylhistidine, 4-aminobutyrate, acetylcholine, arginine, aspartate, carnosine, creatine, creatinine, glutamine, histamine, histidine, isoleucine, leucine, methionine, lysine, myo-inositol, dimethylglycine, acetylalanine, acetylmethionine, pantothenate, phenylalanine, phosphocholine, phosphocreatine, pyridoxine, sarcosine, succinylacetone, thiamine, and urocanate. Conclusions: Accordingly with the data with reduction of: muscle mass, spontaneous locomotion, strength and physical performance, added with absence of anorexia as well as weight change, CIA animal model is a feasible experimental model for rheumatoid cachexia. Concerning the metabolic profile from this model, it can be suggested 28 metabolites related to muscle loss in which can be tested for biomarker of rheumatoid cachexia, targeting prognosis, diagnosis, and syndrome follow up. From those metabolites, the main ones are engaged to metabolism of: histidine; arginine and proline; glycine, serine and threionine; phosphorcreatine, as well as other amino acids and vitamins from B complex.
9

Biomarcadores de caquexia reumatoide : uma abordagem metabolômica em modelo experimental de artrite

Alabarse, Paulo Vinicius Gil January 2016 (has links)
Base teórica: Artrite reumatoide (AR) é uma doença autoimune que afeta as articulações e progride de maneira simétrica e erosiva. Além dos achados articulares, pode ocorrer de perda muscular e síndrome da caquexia. Atualmente, não existe um marcador que sirva de preditor da síndrome de caquexia reumatoide. Estudos metabolômicos em pacientes com AR demonstram uma complexidade em encontrar um biomarcador para caquexia. Ademais, não há modelo experimental de caquexia descrito na literatura, mas o modelo de artrite induzida por colágeno (CIA) possui potencial de ser modelo de caquexia reumatoide. A partir deste modelo, pode-se fazer a busca por biomarcadores de caquexia reumatoide via metabolômica. Objetivo: Avaliar o modelo de CIA como modelo experimental de caquexia reumatoide. Avaliar o perfil metabólico da urina no modelo de CIA e correlacionar com parâmetros clínicos de caquexia reumatoide em busca de possíveis biomarcadores. Métodos: Camundongos machos DBA/1J foram induzidos (CIA; n=13) no dia zero e receberam reforço 18 dias após, e grupo mantidos saudáveis sem indução (CO; n=11). Nos dias 0, 18, 25, 35, 45, 55 e 65 após a indução, foram realizados: coleta de urinas; teste de desempenho físico; teste de locomoção espontânea; teste de força; medida do volume do edema da pata traseira; avaliação do escore clínico; pesagem; e avaliação da ingestão alimentar. Após os 65 dias, os animais foram eutanasiados e tecidos musculares (gastrocnêmio – GA; e tibial anterior – TA) foram dissecados para pesagem e realização da razão sarcoplasmática. Os dados foram analisados por ANOVA de duas vias, seguido de Bonferroni, ou teste t de Pearson, com significância a partir de um p<0,05. A urina coletada foi submetida à ressonância nuclear magnética (1D e 2D J-res). Os metabolitos foram identificados via Chenomx (1D) e pelo Birmingham Metabolite Library (BML; 2D J-res). Utilizou-se a o modelo estatístico de PCA, PLSDA e PLSR para criar ranqueamento de metabolitos (significância a partir de um p<0,05). Analizou-se as rotas metabólicas via Metaboanalyst a partir do ranqueamento de metabólitos obtidos. Os metabólitos obtidos foram filtrados para rotas metabólicas que ocorrem no músculo para identificação de potenciais biomarcadores de perda muscular. Resultados: O grupo CIA apresentou redução de até 24% na locomoção espontânea, de até 66% na força e de até 24% no teste de desempenho físico após 35 dias da indução, bem como redução no peso do GA (24%) e TA (25%), e relação sarcoplasmática (22 e 23%, respectivamente) em relação ao grupo CO. Os modelos estatísticos de PCA, PLSDA e PLSR, e o filtro pelas rotas metabólicas relacionadas com o músculo geraram uma lista de 28 metabólitos e relacionados com o desenvolvimento da doença, sendo eles: 3-metilhistidina, 4-aminobutirato, acetilcolina, arginina, aspartato, carnosina, creatina, creatinina, glutamina, histamina, histidina, isoleucina, leucina, metionina, lisina, mio-inositol, dimetilglicina, acetilalanina, acetilmetionina, pantotenato, fenilalanina, fosfocolina, fosfocreatina, piridoxina, sarcosina, succinilacetona, tiamina, e urocanato. Conclusão: Em concordância com os resultados de redução nos parâmetros de: massa muscular, locomoção espontânea, força e desempenho físico, somando-se a ausência de anorexia bem como mudança no peso, o modelo animal de CIA representa um modelo experimental próprio para caquexia reumatoide. A análise do perfil metabólico deste modelo permite sugerir 28 metabólitos relacionados ao processo de perda muscular, que podem vir a ser biomarcadores de caquexia reumatoide, objetivando prognóstico, diagnóstico e acompanhamento da síndrome. Destes metabólitos, os principais são pertencentes ao metabolismo de: histidina; arginina e prolina; glicina, serina e treonina; fosfocreatina, bem como outros aminoácidos e vitaminas do complexo B. / Background: Rheumatoid Arthritis (RA) is an autoimmune disease that affects the joints and has a symmetric development and it is erosive. Besides joint damage, it can develop muscle loss progress into cachexia syndrome. Currently, there is no marker that can predict it development in rheumatoid patients. Metabolomics in RA have shown to be complex to find out a biomarker for this syndrome. Also, there is no experimental model of cachexia described in literature yet; however the collageninduced arthritis (CIA) animal model seems to be a feasible model for rheumatoid cachexia. With this model, the research for a biomarker of rheumatoid cachexia can be done by metabolomics. Objectives: It will be evaluated if the CIA animal model can be also an animal model of rheumatoid cachexia. Afterwards, it will be evaluated a metabolic profile from urine of this animal model and correlate with clinical signs of rheumatoid cachexia to find out plausible biomarkers of it. Methods: Male DBA/1J mice were submitted to CIA (n=13), immunization occurred at day zero and a booster was performed 18 days after, and a healthy group with no induction (CO; n=11). At the 0,18, 25, 35, 45, 55 and 65 days after the first injection, it was done: urine collection; physical performance test; free exploratory locomotion test; strength test; hindpaw edema volume measurement; follow up disease development; weighted; and food intake. After the 65 days, animals were euthanized and muscle (gastrocnemious – GA; and tibial anterior – TA) were dissected, and weighted for sarcoplasmic ratio. Data were analyzed by two-way ANOVA followed by Bonferroni post hoc, and t-test of Pearson, and statistical critical limit was set for p<0.05. The collected urine was used for nuclear magnetic resonance (1D and 2D J-res). Metabolites were identified by Chenomx (1D) and by the Birmingham Metabolite Library (BML; 2D J-res). Statistical model were performed using PCA, PLSDA and PLSR to create a ranking list of the metabolites (statistical critical limit was set for p<0.05). It was analyzed the metabolic pathway by Metaboanalyst from the data of metabolite ranking list. Then, the metabolite list was filtered by the metabolic pathways that take place in muscle tissue, in order to identify plausible biomarkers of muscle loss. Results: CIA group has shown reduction in up to 24% of free locomotion fatigue, up to 66% of strength and up to 24% of endurance physical performance after 35 days of the induction, as well as a decrease in GA (24%) and TA (25%) weight, and sarcoplasmic ratio also reduced (22 and 23%, respectivamente) related to CO group. The PCA, PLSDA and PLSR statistical models, and the filter by metabolic pathways related to muscle provided a list of 28 metabolites related to disease development, as can be listed: 3-methylhistidine, 4-aminobutyrate, acetylcholine, arginine, aspartate, carnosine, creatine, creatinine, glutamine, histamine, histidine, isoleucine, leucine, methionine, lysine, myo-inositol, dimethylglycine, acetylalanine, acetylmethionine, pantothenate, phenylalanine, phosphocholine, phosphocreatine, pyridoxine, sarcosine, succinylacetone, thiamine, and urocanate. Conclusions: Accordingly with the data with reduction of: muscle mass, spontaneous locomotion, strength and physical performance, added with absence of anorexia as well as weight change, CIA animal model is a feasible experimental model for rheumatoid cachexia. Concerning the metabolic profile from this model, it can be suggested 28 metabolites related to muscle loss in which can be tested for biomarker of rheumatoid cachexia, targeting prognosis, diagnosis, and syndrome follow up. From those metabolites, the main ones are engaged to metabolism of: histidine; arginine and proline; glycine, serine and threionine; phosphorcreatine, as well as other amino acids and vitamins from B complex.
10

Biomarcadores de caquexia reumatoide : uma abordagem metabolômica em modelo experimental de artrite

Alabarse, Paulo Vinicius Gil January 2016 (has links)
Base teórica: Artrite reumatoide (AR) é uma doença autoimune que afeta as articulações e progride de maneira simétrica e erosiva. Além dos achados articulares, pode ocorrer de perda muscular e síndrome da caquexia. Atualmente, não existe um marcador que sirva de preditor da síndrome de caquexia reumatoide. Estudos metabolômicos em pacientes com AR demonstram uma complexidade em encontrar um biomarcador para caquexia. Ademais, não há modelo experimental de caquexia descrito na literatura, mas o modelo de artrite induzida por colágeno (CIA) possui potencial de ser modelo de caquexia reumatoide. A partir deste modelo, pode-se fazer a busca por biomarcadores de caquexia reumatoide via metabolômica. Objetivo: Avaliar o modelo de CIA como modelo experimental de caquexia reumatoide. Avaliar o perfil metabólico da urina no modelo de CIA e correlacionar com parâmetros clínicos de caquexia reumatoide em busca de possíveis biomarcadores. Métodos: Camundongos machos DBA/1J foram induzidos (CIA; n=13) no dia zero e receberam reforço 18 dias após, e grupo mantidos saudáveis sem indução (CO; n=11). Nos dias 0, 18, 25, 35, 45, 55 e 65 após a indução, foram realizados: coleta de urinas; teste de desempenho físico; teste de locomoção espontânea; teste de força; medida do volume do edema da pata traseira; avaliação do escore clínico; pesagem; e avaliação da ingestão alimentar. Após os 65 dias, os animais foram eutanasiados e tecidos musculares (gastrocnêmio – GA; e tibial anterior – TA) foram dissecados para pesagem e realização da razão sarcoplasmática. Os dados foram analisados por ANOVA de duas vias, seguido de Bonferroni, ou teste t de Pearson, com significância a partir de um p<0,05. A urina coletada foi submetida à ressonância nuclear magnética (1D e 2D J-res). Os metabolitos foram identificados via Chenomx (1D) e pelo Birmingham Metabolite Library (BML; 2D J-res). Utilizou-se a o modelo estatístico de PCA, PLSDA e PLSR para criar ranqueamento de metabolitos (significância a partir de um p<0,05). Analizou-se as rotas metabólicas via Metaboanalyst a partir do ranqueamento de metabólitos obtidos. Os metabólitos obtidos foram filtrados para rotas metabólicas que ocorrem no músculo para identificação de potenciais biomarcadores de perda muscular. Resultados: O grupo CIA apresentou redução de até 24% na locomoção espontânea, de até 66% na força e de até 24% no teste de desempenho físico após 35 dias da indução, bem como redução no peso do GA (24%) e TA (25%), e relação sarcoplasmática (22 e 23%, respectivamente) em relação ao grupo CO. Os modelos estatísticos de PCA, PLSDA e PLSR, e o filtro pelas rotas metabólicas relacionadas com o músculo geraram uma lista de 28 metabólitos e relacionados com o desenvolvimento da doença, sendo eles: 3-metilhistidina, 4-aminobutirato, acetilcolina, arginina, aspartato, carnosina, creatina, creatinina, glutamina, histamina, histidina, isoleucina, leucina, metionina, lisina, mio-inositol, dimetilglicina, acetilalanina, acetilmetionina, pantotenato, fenilalanina, fosfocolina, fosfocreatina, piridoxina, sarcosina, succinilacetona, tiamina, e urocanato. Conclusão: Em concordância com os resultados de redução nos parâmetros de: massa muscular, locomoção espontânea, força e desempenho físico, somando-se a ausência de anorexia bem como mudança no peso, o modelo animal de CIA representa um modelo experimental próprio para caquexia reumatoide. A análise do perfil metabólico deste modelo permite sugerir 28 metabólitos relacionados ao processo de perda muscular, que podem vir a ser biomarcadores de caquexia reumatoide, objetivando prognóstico, diagnóstico e acompanhamento da síndrome. Destes metabólitos, os principais são pertencentes ao metabolismo de: histidina; arginina e prolina; glicina, serina e treonina; fosfocreatina, bem como outros aminoácidos e vitaminas do complexo B. / Background: Rheumatoid Arthritis (RA) is an autoimmune disease that affects the joints and has a symmetric development and it is erosive. Besides joint damage, it can develop muscle loss progress into cachexia syndrome. Currently, there is no marker that can predict it development in rheumatoid patients. Metabolomics in RA have shown to be complex to find out a biomarker for this syndrome. Also, there is no experimental model of cachexia described in literature yet; however the collageninduced arthritis (CIA) animal model seems to be a feasible model for rheumatoid cachexia. With this model, the research for a biomarker of rheumatoid cachexia can be done by metabolomics. Objectives: It will be evaluated if the CIA animal model can be also an animal model of rheumatoid cachexia. Afterwards, it will be evaluated a metabolic profile from urine of this animal model and correlate with clinical signs of rheumatoid cachexia to find out plausible biomarkers of it. Methods: Male DBA/1J mice were submitted to CIA (n=13), immunization occurred at day zero and a booster was performed 18 days after, and a healthy group with no induction (CO; n=11). At the 0,18, 25, 35, 45, 55 and 65 days after the first injection, it was done: urine collection; physical performance test; free exploratory locomotion test; strength test; hindpaw edema volume measurement; follow up disease development; weighted; and food intake. After the 65 days, animals were euthanized and muscle (gastrocnemious – GA; and tibial anterior – TA) were dissected, and weighted for sarcoplasmic ratio. Data were analyzed by two-way ANOVA followed by Bonferroni post hoc, and t-test of Pearson, and statistical critical limit was set for p<0.05. The collected urine was used for nuclear magnetic resonance (1D and 2D J-res). Metabolites were identified by Chenomx (1D) and by the Birmingham Metabolite Library (BML; 2D J-res). Statistical model were performed using PCA, PLSDA and PLSR to create a ranking list of the metabolites (statistical critical limit was set for p<0.05). It was analyzed the metabolic pathway by Metaboanalyst from the data of metabolite ranking list. Then, the metabolite list was filtered by the metabolic pathways that take place in muscle tissue, in order to identify plausible biomarkers of muscle loss. Results: CIA group has shown reduction in up to 24% of free locomotion fatigue, up to 66% of strength and up to 24% of endurance physical performance after 35 days of the induction, as well as a decrease in GA (24%) and TA (25%) weight, and sarcoplasmic ratio also reduced (22 and 23%, respectivamente) related to CO group. The PCA, PLSDA and PLSR statistical models, and the filter by metabolic pathways related to muscle provided a list of 28 metabolites related to disease development, as can be listed: 3-methylhistidine, 4-aminobutyrate, acetylcholine, arginine, aspartate, carnosine, creatine, creatinine, glutamine, histamine, histidine, isoleucine, leucine, methionine, lysine, myo-inositol, dimethylglycine, acetylalanine, acetylmethionine, pantothenate, phenylalanine, phosphocholine, phosphocreatine, pyridoxine, sarcosine, succinylacetone, thiamine, and urocanate. Conclusions: Accordingly with the data with reduction of: muscle mass, spontaneous locomotion, strength and physical performance, added with absence of anorexia as well as weight change, CIA animal model is a feasible experimental model for rheumatoid cachexia. Concerning the metabolic profile from this model, it can be suggested 28 metabolites related to muscle loss in which can be tested for biomarker of rheumatoid cachexia, targeting prognosis, diagnosis, and syndrome follow up. From those metabolites, the main ones are engaged to metabolism of: histidine; arginine and proline; glycine, serine and threionine; phosphorcreatine, as well as other amino acids and vitamins from B complex.

Page generated in 0.0536 seconds