• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 11
  • 11
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Skeletal Muscle Model of Infantile-onset Pompe Disease with Patient-specific iPS Cells / 乳児型Pompe病特異的iPS細胞を用いた骨格筋病態モデル

Yoshida, Takeshi 23 January 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21445号 / 医博第4412号 / 新制||医||1032(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 長船 健二, 教授 篠原 隆司, 教授 瀬原 淳子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
2

Biomechanics of Developmental Dysplasia of the Hip - An engineering study of closed reduction utilizing the Pavlik harness for a range of subtle to severe dislocations in infants.

Huayamave, Victor 01 January 2015 (has links)
Developmental Dysplasia of the Hip (DDH) is an abnormal condition where hip joint dislocation, misalignment, or instability is present in infants. Rates of incidence of DDH in newborn infants have been reported to vary between 1 and 20 per 1000 births, making it the most common congenital malformation of the musculoskeletal system. DDH early detection and treatment is critical to avoid the use of surgical treatment in infants and to prevent future complications such as osteoarthritis in adult life. To this day several non-surgical treatments involving the use of harnesses and braces have been proposed to treat DDH in infants, with the Pavlik harness being the current non-surgical standard used to treat DDH at early stages. Although the Pavlik harness has been proven to be successful treating subtle dislocations, severe dislocations do not always reduce. Until now the use of the harness remains an empirical method, and its effectiveness often depends on physician expertise or trial-error procedures; thus a clear guideline has not been established to determine the best optimal harness configuration to treat both subtle and severe dislocations. The goal of this dissertation is to understand the connection between reductions for subtle and severe dislocations and passive muscle forces and moments generated while the harness is used during treatment. While the understanding of DDH biomechanics will provide a valuable clinically applicable approach to optimize and increase harness success rate, it is not without its difficulties. This research has created and developed a three-dimensional based on patient-specific geometry of an infant lower limb. The kinematics and dynamics of the lower limb were defined by modeling the hip, femur, tibia, fibula, ankle, foot, and toe bones. The lines of action of five (5) adductor muscles, namely, the Adductor Brevis, Adductor Longus, Adductor Magnus, Pectineus, and Gracilis were identified as mediators of reduction and its mechanical behavior was characterized using a passive response. Four grades (1-4) of dislocation as specified by the International Hip Dysplasia Institute (IHDI) were considered, and the computer model was computationally manipulated to represent physiological dislocations. To account for proper harness modeling, the femur was restrained to move in an envelope consistent with its constraints. The model of the infant lower limb has been used to analyze subtle and severe dislocations. Results are consistent with previous studies based on a simplified anatomically-consistent synthetic model and clinical reports of very low success of the Pavlik harness for severe dislocations. Furthermore the findings on this work suggest that for severe dislocations, the use of the harness could be optimized to achieve hyperflexion of the lower limb leading to successful reduction for cases where the harness fails. This approach provides three main advantages and innovations: 1) the used of patient-specific geometry to elucidate the biomechanics of DDH; 2) the ability to computationally dislocate the model to represent dislocation severity; and 3) the quantification of external forces needed to accomplish reduction for severe dislocations. This study aims to offer a practical solution to effective treatment that draws from engineering expertise and modeling capabilities and also draws upon medical input. The findings of this work will lay the foundation for future optimization of non-surgical methods critical for the treatment of DDH.
3

Modeling Adjustable Passive Stiffness in Detrusor Smooth Muscle

Quintero, Kevin E 01 January 2006 (has links)
Passive detrusor smooth muscle exhibits both viscoelastic softening and strain softening. Strain softening is a loss of stiffness following a stretch to a longer length and is reversible upon muscle activation. Because of this behavior, steady state passive force in detrusor is not constant for a given muscle length and can be adjusted by an intracellular mechanism. Thus, passive detrusor exhibits adjustable passive stiffness. Existing three-component mechanical models for muscle, the Kelvin and Voigt, are insufficient to display this characteristic. The goal of this thesis is to develop a new biomechanical model for passive force in detrusor by adding additional elements to the Kelvin or Voigt models. Eight mechanical characteristics of detrusor are identified from the literature and with three new experiments, and a novel adjustable passive stiffness model for smooth muscle is proposed. Simulations are performed to demonstrate that the model qualitatively exhibits each of the eight tissue characteristics.
4

Simulation Of A 1-d Muscle Model In Simulink

Zeren, Zekai Uygur 01 December 2007 (has links) (PDF)
The most basic property of a muscle is its ability to contract and produce force when stimulated. A muscle is mainly composed of cells consisting of myofibrils with its basic unit called as a sarcomere. A sarcomere is composed of actin and myosin responsible for the muscle contraction. The Hill-type muscle model is the most commonly used model to simulate the behavior of a muscle. A muscle can produce its maximum force at isometric conditions. The level of force produced in the muscle is determined by the the frequency of the signals from the CNS. The force production is also a function of force-muscle current velocity and force-muscle current length relations. A muscle contains two types of sensors / i.e. muscle spindle and golgi tendon organ, which give rise to the feedback control of the muscle length and muscle contraction velocity. In this study a 1-D model of a muscle is formed step by step in Simulink. In the models the muscle mechanics has been investigated and the results are compared with the previous works.
5

Adaptive neuromechanical control for energy-efficient and adaptive compliant hexapedal walking on rough surfaces

Xiong, Xiaofeng 08 June 2015 (has links)
No description available.
6

An Analysis of Including the Evolution Law for the Serial Element in the Musculoskeletal Modelling

Roser, Alexandra January 2019 (has links)
In the classic Hill model for muscle contraction, the split between the muscle and tendon is arbitrary and the problem lacks a unique solution. Instead of reformulating the problem to a differential-algebraic equation and solving for a set of initial conditions, a constant tendon length is commonly assumed in musculoskeletal simulation tools. This assumption has not been thoroughly tested and introduces errors of unknown magnitude to the simulations. In this thesis, the contractile element of the Hill model is modelled as a friction clutch in parallel to a viscous damper. This provides an evolution law for the muscle length by which the muscle speed is numerically calculated taking into account a non-zero tendon speed. A simple biceps curl is simulated with the friction clutch model and compared to corresponding commercial musculoskeletal simulations. Overall, the results are similar, in particular for the muscle lengths which are almost identical in every simulation (0.00-0.42% difference). The difference in tendon speed is 0.00-3.26%, with upwards tendencies. In general, the error percentage of the tendon speed appears to decrease by the same amount that the contraction speed is reduced. Conclusively, it can be said that the introduced friction clutch model delivers comparative outcomes to a commercial musculoskeletal simulation software, while not assuming a constant tendon length. However, while presenting a relatively simple solution, an increased computation time is to be expected due to the need of a differential equation solver. Further investigation regarding implementation and computing times in more complex simulations may provide an alternative approach to conventional musculoskeletal simulations.
7

Modeling of excitation in skeletal muscle

Metzger, Sabrina Kinzie 14 May 2021 (has links)
No description available.
8

Modelling of muscular force induced by non-isometric contraction

Kosterina, Natalia January 2012 (has links)
The main objective of the study was to investigate and simulate skeletal muscleforce production during and after isometric contractions, active muscle lengtheningand active muscle shortening. The motivation behind this work was to improve thedominant model of muscle force generation based on the theories of Hill from 1938. Effects of residual force enhancement and force depression were observed after concentric and eccentric contractions, and also during stretch-shortening cycles. It wasshown that this force modification is not related to lengthening/shortening velocity, butinstead the steady-state force after non-isometric contractions can be well describedby an initial isometric force to which a modification is added. The modification isevaluated from the mechanical work performed by and on the muscle during lengthvariations. The time constants calculated for isometric force redevelopment appearedto be in certain relations with those for initial isometric force development, an observation which extended our basis for muscle modelling. A macroscopic muscular model consisting of a contractile element, and paralleland series elastic elements was supplemented with a history component and adoptedfor mouse soleus muscle experiments. The parameters from the experiment analysis, particularly the force modification after non-isometric contractions and the timeconstants, were reproduced by the simulations. In a step towards a general implementation, the history modification was introduced in the muscluloskeletal model ofOpenSim software, which was then used for simulations of full body movements. / QC 20120525
9

Modélisation biomécanique de l'interaction tendon-aponévrose-fibre pour estimer les forces musculaires : apport des mesures échographiques

Gérus, Pauline épouse Daussant 26 September 2011 (has links)
L'estimation des forces musculaires nécessite le développement d'un modèle biomécanique. Une des étapes essentielle de ce type d'approche est la modélisation de l'interaction au sein du complexe muscle-tendon entre trois composants, les fibres musculaires, l'aponévrose et le tendon par un modèle de type Hill. L'objectif de ce travail doctoral était d'identifier les paramètres dans le modèle de type Hill qui jouent un rôle important dans l'estimation des forces musculaires et de proposer une méthode pour les définir. L’échographie a été utilisée pour estimer la relation force-déformation in vivo du tendon et de l'aponévrose, et le comportement in vivo des fibres musculaires au cours de la contraction pour chaque sujet et comme un moyen de quantifier la précision des modèles en mesurant le comportement in vivo des fibres musculaires et les comparer aux sorties du modèle. L'utilisation d'une définition de l'Élément Élastique en série spécifique au sujet dans les modèles biomécaniques joue un rôle important pour des activités où les forces musculaires sont importantes. Lors de tâches isométriques maximales, la relation force-déformation du tendon spécifique au sujet combiné à des contraintes sur la géométrie initiale conduit à des estimations de forces musculaires plus faibles et un comportement différent des fibres. En ce qui concerne des activités comme le hopping et la course, l’utilisation d’une relation force-déformation du complexe tendon-aponévrose spécifique au sujet permet d’estimer des forces musculaires plus grandes et entraîne un découplage du comportement des fibres musculaires plus important par rapport au complexe muscle-tendon. Pour des activités de marche, la définition de l’élément en série dans le modèle de type-Hill n'influence pas les forces musculaires. L'échographie apparaît comme un outil intéressant pour personnaliser les modèles et pourrait être appliqué sur des patients ayant un trouble neuromusculosquelettique. / The estimation of forces produced by the muscle-tendon complex around a joint needs the development of a neuromusculoskeletal model. One of essential step of this approach is the modeling by a Hill-type muscle model of the interaction within the muscle-tendon complex between three components: the muscle fiber, the aponeurosis, and the tendon. The objective of this work was to identify the parameters used as input into Hill-type muscle model that play an important role in muscle force estimation and to propose a method to define them. The ultrasonography has been used to estimate in vivo tendon and aponeurosis force-strain relationships, and the in vivo behavior of muscle fiber during the contraction for each subject. In addition, a method was proposed to quantify the model accuracy by estimating the in vivo behavior of muscle fiber and compare it with model outputs. The use of subject-specific definition of Series Elastic Element into the EMG-driven model plays an important role for activity at high level of muscle forces. During maximal isometric contraction, the subject-specific tendon force-strain relationship combined with constraint on initial muscle geometry (i.e., fiber length and muscle thickness) leads to lower estimated muscle forces and to a different behavior for the muscle fiber. Concerning highly dynamic tasks such as running and \textit{hopping}, the use of subject specific force-strain relationship for the tendon-aponeurosis complex allows to estimate higher muscle forces and leads to a heavier decoupling behavior between muscle fiber and muscle-tendon complex.The estimation of forces produced by the muscle-tendon complex needs the development of a neuromusculoskeletal model. One of essential step of this approach is the modeling by a Hill-type muscle model of the interaction within the muscle-tendon complex between three components: the muscle fiber, the aponeurosis, and the tendon. The objective of this work was to identify the parameters used as input into Hill-type muscle model that play an important role in muscle force estimation and to propose a method to define them. The ultrasonography has been used to estimate in vivo tendon and aponeurosis force-strain relationships, and the in vivo behavior of muscle fiber during the contraction for each subject. In addition, a method was proposed to quantify the model accuracy by estimating the in vivo behavior of muscle fiber and compare it with model outputs. The use of subject-specific definition of Series Elastic Element into the EMG-driven model plays an important role for activity at high level of muscle forces. During maximal isometric contraction, the subject-specific tendon force-strain relationship combined with constraint on initial muscle geometry (fiber length and muscle thickness) leads to lower estimated muscle forces and to a different behavior for the muscle fiber. Concerning highly dynamic tasks such as running and hopping, the use of subject specific force-strain relationship for the tendon-aponeurosis complex allows to estimate higher muscle forces and leads to a heavier decoupling behavior between muscle fiber and muscle-tendon complex. Concerning dynamic tasks with low force level such as walking, the estimation of muscle force was not influenced by the Series Elastic Element definition. The ultrasonography appears as a useful tool to personalize neuromusculoskeletal models and could be used for patient with neuromusculoskeletal disorders showing an alteration of tendon mechanical properties allowing to quantify the effect of rehabilitation program.
10

Biomechanical Factors Influencing Treatment Of Developmental Dysplasia Of The Hip (ddh) With The Pavlik Harness

Ardila, Orlando 01 January 2013 (has links)
Biomechanical factors influencing the reduction of dislocated hips with the Pavlik harness in patients of Developmental Dysplasia of the Hip (DDH) were studied using a simplified three-dimensional computer model simulating hip reduction dynamics in (1) subluxated, and (2) fully dislocated hip joints. The CT-scans of a 6 month-old female infant were used to measure the geometrical features of the hip joint including acetabular and femoral head diameter, acetabular depth, and geometry of the acetabular labrum, using the medical segmentation software Mimics. The lower extremity was modeled by three segments: thigh, leg, and foot. The mass and the location of the center of gravity of each segment were calculated using anthropometry, based on the total body mass of a 6-month old female infant at the 50th length-for-age percentile. A calibrated nonlinear stress-strain model was used to simulate muscle responses. The simplified 3D model consists of the pubis, ischium, acetabulum with labrum, and femoral head, neck, and shaft. It is capable of simulating dislocated as well as reduced hips in abduction and flexion. Five hip adductor muscles were identified as key mediators of DDH prognosis, and the non-dimensional force contribution of each in the direction necessary to achieve concentric hip reductions was determined. Results point to the adductor muscles as mediators of subluxated hip reductions, as their mechanical action is a function of the degree of hip dislocation. For subluxated hips in abduction and flexion, the Pectineus, Adductor Brevis, Adductor Longus, and proximal Adductor Magnus muscles contribute positively to reduction, while the rest of the Adductor Magnus contributes negatively. In full dislocations all muscles contribute detrimentally to reduction, elucidating the need for traction to reduce Graf IV type dislocations. Reduction of iv dysplastic hips was found to occur in two distinct phases: (a) release phase and (b) reduction phase. To expand the range of DDH-related problems that can be studied, an improved threedimensional anatomical computer model was generated by combining CT-scan and muscle positional data belonging to four human subjects. This model consists of the hip bone and femora of a 10-week old female infant. It was segmented to encompass the distinct cartilaginous regions of infant anatomy, as well as the different regions of cortical and cancellous bone; these properties were retrieved from the literature. This engineering computer model of an infant anatomy is being employed for (1) the development of a complete finite element and dynamics computer model for simulations of hip dysplasia reductions using novel treatment approaches, (2) the determination of a path of least resistance in reductions of hip dysplasia based on a minimum potential energy approach, (3) the study of the mechanics of hyperflexion of the hip as alternative treatment for late-presenting cases of hip dysplasia, and (4) a comprehensive investigation of the effects of femoral anteversion angle (AV) variations in reductions of hip dysplasia. This thesis thus reports on an interdisciplinary effort between orthopedic surgeons and mechanical engineers to apply engineering fundamentals to solve medical problems. The results of this research are clinically relevant in pediatric orthopaedics.

Page generated in 0.0528 seconds