• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effets du myo-inositol sur la perméabilité à l'eau d'ovocytes de Xenopus laevis exprimant les formes native et mutée D150E de l'aquaporine-2

Lussier, Yoann January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
12

The modulating effect of myo-inositol and other antidepressants on the mRNA levels and protein expression of selected subcellular enzymes / Marina van Rooyen

Van Rooyen, Marina January 2005 (has links)
myo-lnositol (mIns), a natural component of the human diet and essential precursor of several signalling pathways, including that of G protein-coupled receptors, has also been shown to be effective in the treatment of psychiatric disorders such as depression, obsessive compulsive disorder and panic disorder. Most likely since mlns is a simple isomer of glucose, no serious side effects have been reported with its use, even at high oral doses of mlns. Previous studies suggest that the therapeutic action of mlns may include reduced serotonin 5HTzA and muscarinic acetylcholine receptor function. An important signal transduction system that may possibly be involved in the mechanism of action of antidepressants is phosphoinositide (PI) turnover. In this signalling system PI-phospholipase C (PLCpl), that is implicated in the in the mechanism of action of antidepressants and anxiolytics, is activated. The mechanism of action of mlns, however, still remains elusive and needs further investigation. In this study a possible modulatory role of 24-hour pre-treatment of human neuroblastoma cell line (SH-SY5Y) with mlns on mRNA levels and protein expression of phospholipase C-p1 (PLCP1) and glycogen synthase kinase 3P (GSK3p) was investigated. The effects of mlns were also compared to that of other prototype antidepressants, such as fluoxetine (a selective serotonin reuptake inhibitor), imipramine (a tricyclic antidepressant), lithium and another drug with potential antidepressant effects, sildenafil (phosphodiesterase 5-type (PDE5) inhibitor). Real-time reverse transcription Polymerase Chain Reaction (RTPCR) was performed in order to investigate the mRNA levels, while protein expression in membranes and the cytosol fraction of cells were quantified with Western blots. The expression of PLCPl was decreased after pre-treatments with imipramine or myoinositol in combination with fluoxetine. In addition, sildenafil alone or in combination with myo-inositol, also decreased the expression of membrane-bound PLCp1. However, a 24- hour pre-treatment with lithium did not alter PLCPl expression significantly. Determined mRNA levels for the expression of PLCPl were consistent in these findings, except for the inhibition of the mRNA for the expression of PLCPl also after lithium treatment. The reduced PLCpl mRNA levels after lithium pre-treatment may suggest the involvement of posttranscriptional modification (or delayed translational effects) of PLCpl after lithium treatment. The data from the current study suggest that antidepressant action may include downregulation of PLCPl expression and that modulators of the nitric oxidecGMP pathway (e.g. sildenafil as a PDE5 inhibitor) may exhibit similar properties. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2005.
13

Effets du myo-inositol sur la perméabilité à l'eau d'ovocytes de Xenopus laevis exprimant les formes native et mutée D150E de l'aquaporine-2

Lussier, Yoann January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
14

The modulating effect of myo-inositol and other antidepressants on the mRNA levels and protein expression of selected subcellular enzymes / Marina van Rooyen

Van Rooyen, Marina January 2005 (has links)
myo-lnositol (mIns), a natural component of the human diet and essential precursor of several signalling pathways, including that of G protein-coupled receptors, has also been shown to be effective in the treatment of psychiatric disorders such as depression, obsessive compulsive disorder and panic disorder. Most likely since mlns is a simple isomer of glucose, no serious side effects have been reported with its use, even at high oral doses of mlns. Previous studies suggest that the therapeutic action of mlns may include reduced serotonin 5HTzA and muscarinic acetylcholine receptor function. An important signal transduction system that may possibly be involved in the mechanism of action of antidepressants is phosphoinositide (PI) turnover. In this signalling system PI-phospholipase C (PLCpl), that is implicated in the in the mechanism of action of antidepressants and anxiolytics, is activated. The mechanism of action of mlns, however, still remains elusive and needs further investigation. In this study a possible modulatory role of 24-hour pre-treatment of human neuroblastoma cell line (SH-SY5Y) with mlns on mRNA levels and protein expression of phospholipase C-p1 (PLCP1) and glycogen synthase kinase 3P (GSK3p) was investigated. The effects of mlns were also compared to that of other prototype antidepressants, such as fluoxetine (a selective serotonin reuptake inhibitor), imipramine (a tricyclic antidepressant), lithium and another drug with potential antidepressant effects, sildenafil (phosphodiesterase 5-type (PDE5) inhibitor). Real-time reverse transcription Polymerase Chain Reaction (RTPCR) was performed in order to investigate the mRNA levels, while protein expression in membranes and the cytosol fraction of cells were quantified with Western blots. The expression of PLCPl was decreased after pre-treatments with imipramine or myoinositol in combination with fluoxetine. In addition, sildenafil alone or in combination with myo-inositol, also decreased the expression of membrane-bound PLCp1. However, a 24- hour pre-treatment with lithium did not alter PLCPl expression significantly. Determined mRNA levels for the expression of PLCPl were consistent in these findings, except for the inhibition of the mRNA for the expression of PLCPl also after lithium treatment. The reduced PLCpl mRNA levels after lithium pre-treatment may suggest the involvement of posttranscriptional modification (or delayed translational effects) of PLCpl after lithium treatment. The data from the current study suggest that antidepressant action may include downregulation of PLCPl expression and that modulators of the nitric oxidecGMP pathway (e.g. sildenafil as a PDE5 inhibitor) may exhibit similar properties. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2005.
15

Magnetic resonance spectroscopy quality assessment at CUBIC and application to the study of the cerebellar deep nuclei in children with fetal alcohol spectrum disorder

Du Plessis, Lindie January 2010 (has links)
Includes bibliographical references (leaves 73-79). / In vivo magnetic resonance spectroscopy (MRS) is an imaging technique that allows the chemical study of human tissue non-invasively. The method holds great promise as a diagnostic tool once its reliability has been established. Inter-scanner variability has, however, hampered this from happening as results cannot easily be compared if acquired on different scanners. In this study a phantom was constructed to determine the localisation efficiency of the 3 T Siemens Allegra MRI scanner located at the Cape Universities Brain Imaging Centre (CUBIC). Sufficient localisation is the key to acquiring useful spectroscopic data as only the signal from a small volume of interest (VOI) is typically acquired. The phantom consisted of a Perspex cube located inside a larger Perspex sphere. Solutions of the cerebral metabolites N-acetyl aspartate (NAA) and choline (Cho) were placed in the inner cube and outer sphere respectively. The phantom was scanned at a range of voxel sizes and echo times in order to determine parameters that typically indicate the performance of the scanner in question. The resultant full width at half maximum (FWHM) and signal to noise ratio (SNR) values indicated that optimal results were obtained for a voxel with dimensions 20 x 20 x 20 mm3. The selection efficiency could not be measured due to limitations in the scanner, but two other performance parameters ' extra volume suppression (EVS) and contamination ' could be determined. The EVS showed that the scanner was able to eliminate the entire background signal from the out-of-voxel region when voxel sizes with dimensions (20 mm)3 and (30 mm)3 were used. This performance decreased to 96.2% for a voxel size of (50 mm)3. The contamination indicated that the unwanted signal, weighted by the respective proton densities of the chemicals, ranged from 12% in the (20 mm)3 voxel to 24% in the (50 mm)3 voxel. These ranges are well within acceptable limits for proton MRS. Analysis of the water suppression achieved in the scanner showed an efficiency of 98.84%, which is acceptable for proton spectroscopy. It was also found that manual iv shimming of the scanner improved the spectra obtained, as compared to the automated shimming performed by the scanner. The second objective of the study was to quantify absolute metabolite concentrations in the familiar SI units of mM as results were previously mostly expressed as metabolite ratios. The LCModel software was used to assess two methods of determining absolute metabolite concentrations and the procedure using water scaling consistently showed superior performance to a method using a calibration factor. The method employing water scaling was then applied to a study of fetal alcohol spectrum disorder (FASD) where the deep cerebellar nuclei of children with FASD and a control group were scanned. The cerebellar nuclei were of interest as children with FASD show a remarkably consistent deficit in eye blink conditioning (EBC). The cerebellar deep nuclei is known to play a critical role in the EBC response. The results show significant decreases in the myo-inositol (mI) and total choline (tCho) concentrations of children with FASD in the deep cerebellar nuclei compared to control children. The FAS/PFAS subjects have a mean mI concentration of 4.6 mM as compared to a mean of 5.3 mM in the controls. A Pearson correlation showed that there was a significant relationship between decreasing mI concentrations with increasing prenatal alcohol exposure. The mean tCho concentrations are 1.3 mM for FAS/PFAS and 1.5 mM for the controls. There was no significant differences between the heavily exposed group and either the FAS/PFAS or the control subjects for either metabolite. The decreased mI and tCho concentrations may indicate deficient calcium signalling or decreased cell membrane integrity ' both of which can explain the compromised cerebellar learning in FASD subjects.
16

Evidence That Myo-Inositol Plus Ethanolamine Elevates Plasmalogen Levels And Lends Protection Against Oxidative Stress In Neuro-2A Cells

Sibomana, Isaie January 2016 (has links)
No description available.
17

Molecular Characterization of Two myo-Inositol Oxygenases in Arabidopsis thaliana

Alford, Shannon Recca 08 April 2009 (has links)
Understanding how plants respond to stress is of importance, considering the increasing need to feed a growing population and supply its energy. Plants have complex systems for detecting, and responding to stresses. One stress-responsive system involves myo-inositol (Ins). Ins is a precursor for cell wall components, inositol trisphosphate (Ins(1,4,5)P3) and phosphatidylinositol phosphate signaling molecules, and an alternate ascorbic acid (AsA) synthesis pathway. The enzyme, myo-inositol oxygenase (MIOX) is encoded by four genes in Arabidopsis and catalyzes the first step of Ins catabolism producing D-glucuronic acid (DGlcA). This research focuses on MIOX metabolism of Ins during plant growth and stress responses. I have examined miox mutants for alterations in metabolism and signaling. MIOX2 and MIOX4 expression patterns correlate with miox mutant root growth in varying nutrient conditions, and changes in flowering time. In miox2 mutants, I found an increase in Ins in most tissues, which was accompanied by cold- and abscisic (ABA)- sensitivity; however, miox4 mutants are ABA- insensitive, and have a small increase of Ins in flowers. MIOX2:GFP fusion protein accumulates in the cytoplasm and MIOX4:GFP accumulates in the cytoplasm and nucleus. Overexpresser MIOX4+ plants provide a model system to examine how directing carbon from Ins into DGlcA impacts Ins levels and Ins signaling. I have examined MIOX4+ plants for alterations in MIOX4 RNA and protein, and measured Ins by gas chromatography (GC). My results indicate that MIOX4+ tissues are impacted differently by the MIOX4 transgene, with decreases in Ins after seed imbibition, and increased Ins levels later in development. Ins depletion in seedlings was correlated with a decrease in Ins(1,4,5)P3. To determine the impact of reducing Ins and Ins(1,4,5)P3 in MIOX4+ seedlings, I examined processes known to involve Ins(1,4,5)P3 signaling. MIOX4+ seed have increased seed dormancy, NaCl-sensitivity, and ABA-insensitivity. These results suggest MIOX affects Ins signaling in response to ABA. Together, these data indicate that transcriptional control of MIOX2 and MIOX4 results in distinct roles in plant growth, and that MIOX2 and MIOX4 function in metabolic and signaling processes critical for growth, nutrient sensing, and stress responses. / Ph. D.
18

Isolation and Characterization of D-Myo-Inositol-3-Phosphate Synthase Gene Family Members in Soybean

Good, Laura Lee 13 August 2001 (has links)
The objective of this research was to isolate genes encoding isoforms of the enzyme D-myo-inositol 3-phosphate synthase (MIPS, E.C. 5.5.1.4) from soybean and to characterize their expression, especially with respect to their involvement in phytic acid biosynthesis. A MIPS-homologous cDNA, designated GmMIPS1, was isolated via PCR using total RNA from developing seeds. Southern blot analysis and examination of MIPS-homologous soybean EST sequences suggested that GmMIPS1 is part of a multigene family of at least four similar members. The sequences of promoter and genomic regions of GmMIPS1 and GmMIPS2 revealed a high degree of sequence conservation. Northern and western blot analyses showed that MIPS transcript and protein are abundantly expressed early in seed development. Immunolocalization of MIPS protein in developing seeds confirmed expression of MIPS early in seed development and correlated MIPS protein accumulation in soybean seed tissue with tissues in which phytic acid is known to accumulate. The promoter region of GmMIPS1 was isolated and analyzed for possible seed-specificity using promoter:GUS fusions. Two GmMIPS1 promoter fragments were capable of conferring GUS expression when bombarded directly into developing soybean seeds. However, preliminary bombardment experiments into soybean cell suspension culture indicated that both promoter fragments drove expression of GUS in undifferentiated tissue, indicating a potential lack of seed-specificity. / Master of Science
19

Caractérisation du co-transporteur Na+/myo-inositol SMIT2 dans les membranes en bordure en brosse de rein de lapin et d’intestin de rat

Aouameur, Rym 03 1900 (has links)
Le myo-inositol (MI) est un soluté organique impliqué dans diverses fonctions physiologiques de la cellule dont la signalisation cellulaire. Il est également un osmolyte compatible reconnu. Trois co-transporteurs de type actif secondaire responsables de son absorption ont été identifiés. Deux d’entre eux sont couplés au transport du sodium (SMIT1 et SMIT2) et le troisième est couplé au transport de protons (HMIT). L’objectif de cette étude a été la caractérisation du transport du MI par SMIT2 dans des membranes en bordure en brosse (BBMv) issues du rein de lapin et de l’intestin de rat ainsi qu’après expression dans les ovocytes de Xenopus laevis. La quantification de l’ARNm de SMIT1 et de SMIT2 dans le rein nous a appris que SMIT1 est majoritairement présent dans la médullaire alors que SMIT2 est principalement localisé dans le cortex. Ces résultats ont été confirmés par immunobuvardage en utilisant un anticorps dirigé contre SMIT2. Grâce à l’inhibition sélective de SMIT1 par le L-Fucose et de SMIT2 par le D-chiro-inositol (DCI), nous avons démontré que SMIT2 semble le seul responsable du transport luminal de MI dans le tubule contourné proximal avec un Km de 57 ± 14 µM. Pour ce qui est de l’intestin, des études de transport de MI radioactif ont démontré une absence de transport de MI chez le lapin alors que l’intestin de rat présente un transport de MI très actif. Une quantification par qRT-PCR nous a permis de constater que l’intestin de lapin ne semble pas posséder les transporteurs de MI nécessaires. Comme pour le rein, SMIT2 semble le seul transporteur de MI présent au niveau du pôle apical des entérocytes intestinaux chez le rat. Il est chargé du prélèvement du MI de l'alimentation avec un Km de 150 ± 40 µM. Les analyses fonctionnelles exécutées sur SMIT2 de rat en électrophysiologie après expression dans les ovocytes de Xenopus laevis donnent sensiblement les mêmes résultats que pour les BBMv de rein de lapin et d’intestin de rat. Dans les ovocytes, SMIT2 présente une grande affinité pour le MI (270 ± 19 µM) et le DCI (310 ± 60 µM) et aucune affinité pour le L-fucose. Il est ii également très sensible à la phlorizine (16 ± 7 µM). Une seule exception persiste : la constante d’affinité pour le glucose dans les BBMv d’intestin de rat est 40 fois plus petite que celle observée sur les ovocytes de Xenopus laevis. Nous avons également testé la capacité de certains transporteurs de sucre présents à la surface des membranes apicales des entérocytes à prélever le MI. Vu que l'inhibition de ces transporteurs (SGLT1 et GLUT5) ne changeait rien au taux de MI radioactif transporté, nous en avons conclu qu'ils ne sont pas impliqués dans son transport. Finalement, l’efflux de MI à partir du pôle basolatéral des entérocytes n’est pas effectué par GLUT2 puisque ce dernier lorsqu'il est exprimé dans des ovocytes, est incapable de transporter le MI. / Myo-inositol (MI) is an organic solute involved in various aspects of cell physiology, including cell signaling. It is also known as a compatible osmolyte. Three secondary active MI cotransporters have been identified; two are Na+- coupled (SMIT1 and SMIT2) and one is H+-coupled (HMIT). The main aim of this study was to characterize MI uptake throught SMIT2 as expressed in epithelial cells and in Xenopus laevis oocytes. In order to achieve the characterization of this transport system, we used purified brush border membrane vesicles (BBMv) isolated from rabbit kidney and rat intestine. We first performed a quantification of mRNA levels in rabbit kidney using real time PCR for both SMIT1 and SMIT2. We found that SMIT1 is mainly expressed in the renal medulla while SMIT2 is mainly localized in the renal cortex. This result was confirmed on Western blots using an antibody raised against SMIT2. Through inhibition studies using selective substrates for SMIT1 (inhibited by L-fucose) and SMIT2 (inhibited by D-chiroinositol), we showed that SMIT2 seems to be responsible for all the apical transport of MI into the proximal convoluted tubule with a Km of 57 ± 14 µM. By transport studies we established that rabbit intestine seems to lack apical transport of MI while rat intestine has a very active uptake of this molecule. qRT-PCR quantification confirmed the absence of MI transporters in rabbit intestine. As for kidney, SMIT2 seems to be the only transporter responsible for apical MI uptake in enterocytes with a Km of 150 ± 40 µM. Functional analysis of rat SMIT2 activity, via electrophysiological studies in Xenopus oocytes, demonstrated similarities to the activities of SMIT2 from rat intestine and rabbit kidney. SMIT2 displays high affinities for MI (270 ± 19 µM), DCI (310 ± 60 µM) and no affinity for L-fucose. SMIT2 is very sensitive to phlorizin (Pz; 16 ± 7 µM). Although these functional characteristics essentially confirmed those found in rat intestine, a iv discrepancy exists between the two systems studied. Indeed, the affinity constant for glucose was approximately 40-fold lower in vesicles than in oocytes. We also tested the ability of SGLT1 and GLUT5, other sugar transport systems present in enterocytes apical membranes, to perform MI uptake. Because the inhibition of these transporters did not alter radiolabeled MI uptake, we concluded that they had no significant contribution to MI transport in rat intestine. Finally, the basolateral efflux of MI was not mediated by GLUT2 because when expressed in oocytes, this transporter was not able to transport MI.
20

Caractérisation du co-transporteur Na+/myo-inositol SMIT2 dans les membranes en bordure en brosse de rein de lapin et d’intestin de rat

Aouameur, Rym 03 1900 (has links)
Le myo-inositol (MI) est un soluté organique impliqué dans diverses fonctions physiologiques de la cellule dont la signalisation cellulaire. Il est également un osmolyte compatible reconnu. Trois co-transporteurs de type actif secondaire responsables de son absorption ont été identifiés. Deux d’entre eux sont couplés au transport du sodium (SMIT1 et SMIT2) et le troisième est couplé au transport de protons (HMIT). L’objectif de cette étude a été la caractérisation du transport du MI par SMIT2 dans des membranes en bordure en brosse (BBMv) issues du rein de lapin et de l’intestin de rat ainsi qu’après expression dans les ovocytes de Xenopus laevis. La quantification de l’ARNm de SMIT1 et de SMIT2 dans le rein nous a appris que SMIT1 est majoritairement présent dans la médullaire alors que SMIT2 est principalement localisé dans le cortex. Ces résultats ont été confirmés par immunobuvardage en utilisant un anticorps dirigé contre SMIT2. Grâce à l’inhibition sélective de SMIT1 par le L-Fucose et de SMIT2 par le D-chiro-inositol (DCI), nous avons démontré que SMIT2 semble le seul responsable du transport luminal de MI dans le tubule contourné proximal avec un Km de 57 ± 14 µM. Pour ce qui est de l’intestin, des études de transport de MI radioactif ont démontré une absence de transport de MI chez le lapin alors que l’intestin de rat présente un transport de MI très actif. Une quantification par qRT-PCR nous a permis de constater que l’intestin de lapin ne semble pas posséder les transporteurs de MI nécessaires. Comme pour le rein, SMIT2 semble le seul transporteur de MI présent au niveau du pôle apical des entérocytes intestinaux chez le rat. Il est chargé du prélèvement du MI de l'alimentation avec un Km de 150 ± 40 µM. Les analyses fonctionnelles exécutées sur SMIT2 de rat en électrophysiologie après expression dans les ovocytes de Xenopus laevis donnent sensiblement les mêmes résultats que pour les BBMv de rein de lapin et d’intestin de rat. Dans les ovocytes, SMIT2 présente une grande affinité pour le MI (270 ± 19 µM) et le DCI (310 ± 60 µM) et aucune affinité pour le L-fucose. Il est ii également très sensible à la phlorizine (16 ± 7 µM). Une seule exception persiste : la constante d’affinité pour le glucose dans les BBMv d’intestin de rat est 40 fois plus petite que celle observée sur les ovocytes de Xenopus laevis. Nous avons également testé la capacité de certains transporteurs de sucre présents à la surface des membranes apicales des entérocytes à prélever le MI. Vu que l'inhibition de ces transporteurs (SGLT1 et GLUT5) ne changeait rien au taux de MI radioactif transporté, nous en avons conclu qu'ils ne sont pas impliqués dans son transport. Finalement, l’efflux de MI à partir du pôle basolatéral des entérocytes n’est pas effectué par GLUT2 puisque ce dernier lorsqu'il est exprimé dans des ovocytes, est incapable de transporter le MI. / Myo-inositol (MI) is an organic solute involved in various aspects of cell physiology, including cell signaling. It is also known as a compatible osmolyte. Three secondary active MI cotransporters have been identified; two are Na+- coupled (SMIT1 and SMIT2) and one is H+-coupled (HMIT). The main aim of this study was to characterize MI uptake throught SMIT2 as expressed in epithelial cells and in Xenopus laevis oocytes. In order to achieve the characterization of this transport system, we used purified brush border membrane vesicles (BBMv) isolated from rabbit kidney and rat intestine. We first performed a quantification of mRNA levels in rabbit kidney using real time PCR for both SMIT1 and SMIT2. We found that SMIT1 is mainly expressed in the renal medulla while SMIT2 is mainly localized in the renal cortex. This result was confirmed on Western blots using an antibody raised against SMIT2. Through inhibition studies using selective substrates for SMIT1 (inhibited by L-fucose) and SMIT2 (inhibited by D-chiroinositol), we showed that SMIT2 seems to be responsible for all the apical transport of MI into the proximal convoluted tubule with a Km of 57 ± 14 µM. By transport studies we established that rabbit intestine seems to lack apical transport of MI while rat intestine has a very active uptake of this molecule. qRT-PCR quantification confirmed the absence of MI transporters in rabbit intestine. As for kidney, SMIT2 seems to be the only transporter responsible for apical MI uptake in enterocytes with a Km of 150 ± 40 µM. Functional analysis of rat SMIT2 activity, via electrophysiological studies in Xenopus oocytes, demonstrated similarities to the activities of SMIT2 from rat intestine and rabbit kidney. SMIT2 displays high affinities for MI (270 ± 19 µM), DCI (310 ± 60 µM) and no affinity for L-fucose. SMIT2 is very sensitive to phlorizin (Pz; 16 ± 7 µM). Although these functional characteristics essentially confirmed those found in rat intestine, a iv discrepancy exists between the two systems studied. Indeed, the affinity constant for glucose was approximately 40-fold lower in vesicles than in oocytes. We also tested the ability of SGLT1 and GLUT5, other sugar transport systems present in enterocytes apical membranes, to perform MI uptake. Because the inhibition of these transporters did not alter radiolabeled MI uptake, we concluded that they had no significant contribution to MI transport in rat intestine. Finally, the basolateral efflux of MI was not mediated by GLUT2 because when expressed in oocytes, this transporter was not able to transport MI.

Page generated in 0.0474 seconds