Spelling suggestions: "subject:"myofibrille"" "subject:"myofibrilles""
1 |
Effets de l'entraînement en résistance, de la performance à l'unité contractile / Effets of resistance training, from performance to contractile unitPhilippe, Antony 04 December 2015 (has links)
Ce travail de thèse vise à améliorer notre compréhension des effets l'entraînement en résistance sur la performance et le muscle strié squelettique. La dynamique de ces effets de l'entraînement a été appréhendée de façon systématique grâce à des outils issus de la théorie des systèmes, auprès de 26 rongeurs entraînés en résistance dans un protocole d'escalade avec charges additionnelles. Le modèle classique (Banister et coll, 1975) a permis de décrire les variations de performance de manière significative (R2 = 0,53, P<0,001). L'origine des gains de performance très marqués (+136% par rapport au groupe contrôle) a été recherchée parmi les mécanismes adaptatifs musculaires potentiels. A l'issue de l'entraînement, une augmentation de l'activité de la myosine ATPase de 123 ± 61% indépendante du phénotype a été observée par rapport aux animaux contrôles. Cette augmentation de la puissance chimique consommée semble liée à une augmentation de la vitesse des étapes d'hydrolyse de l'ATP et surtout de celle de la libération des produits de cette hydrolyse (i.e. ADP et Pi) accompagnant la bascule de la tête de myosine. Une nouvelle forme de plasticité musculaire semble avoir été identifiée. Sur la base des mécanismes adaptatifs musculaires, une nouvelle formulation mathématique plus physiologique du modèle des effets de l'entraînement a été proposée et a aboutit à une meilleure qualité d'ajustement (R2 = 0,71, P<0,001). La fonction impulsionnelle du modèle classique a été remplacée par une fonction exponentielle de croissance qui semble plus appropriée pour rendre compte à la fois des variations de performance mais aussi des adaptations qui surviennent au sein du tissu musculaire comme au sein des unités contractiles elles-mêmes. / This thesis work aims to improve our understanding of the effects of resistance training on performance and skeletal muscle. The dynamic of these effects of training has been apprehended systematically trough tools from systems theory, with 26 rodents resistance trained on a climbing protocol with additional weights. The classical model (Banister et al, 1975) was suitable to analyze the training response (R2 = 0.53, P <0.001). The origin of the very marked performance gains (+ 136% compared to the control group) was investigated among the potential muscle adaptive mechanisms. At the end of the training program, an increase of 123 ± 61% in myosin ATPase activity independent of the phenotype was observed compared to control animals. This increase in myosin ATPase activity seems to occur precisely during the main myosin head isomerization step (i.e. powerstroke) that includes the liberation of the hydrolysis products, and to a lesser extent, during ATP hydrolysis step. A new form of muscular plasticity seems identified. Based on muscle adaptive mechanisms, a new mathematical formulation, more physiological, of the model of the training effects has been proposed and resulted in a better fit (R2 = 0.71, P <0.001). The impulse function of the traditional model has been replaced by an exponential growth function that seems more suitable to analyze both the training response and the adaptations that occur within the muscle tissue as in the contractile units themselves.
|
2 |
Analyse von Protein-Protein-Wechselwirkungen und der <i>in vivo</i> Phosphorylierung des Sarkomerproteins Myomesin / Analysis of Protein-Protein Interactions and in vivo Phosphorylation of the Sarcomeric Protein MyomesinHimmel, Mirko January 2004 (has links)
Für ein tiefergehendes Verständnis von Entwicklung und Funktion der quergestreiften Muskulatur ist eine Betrachtung der am Aufbau der Myofibrillen, den kontraktilen Organellen, beteiligten Proteine essentiell.<br>
Die vorliegende Arbeit beschäftigt sich mit Myomesin, einem Protein der sarkomeren M-Bande. Zunächst wurde die cDNA des humanen Myomesins vollständig kloniert, sequenziert und nachfolgend die komplette Größe der aminoterminalen Kopfdomäne bestimmt. Es konnte gezeigt werden, daß Myomesin in vitro mit den Domänen 1 und 12 an Myosin bindet. Die muskelspezifische Isoform der Kreatinkinase bindet an die Domänen 7 und 8.<br>
Stimulations- und Inhibitionsexperimente belegen, daß Myomesin an Serin 618 in vivo durch die Proteinkinase A phosphoryliert wird und daß diese Phosphorylierung durch Aktivierung beta2-adrenerger Rezeptoren stimulierbar ist. In Muskelgewebeproben von Patienten, die an der Hypertrophen Kardiomyopathie, einer genetisch bedingten Herzmuskelkrankheit, erkrankt sind, konnte mit einem neu hergestellten phosphorylierungsabhängigen Antikörper eine Verminderung der Menge phosphorylierten Myomesins nachgewiesen werden. Mögliche Ursachen werden diskutiert.<br>
Myomesin bildet Dimere, wie durch hefegenetische und biochemische Experimente gezeigt werden konnte. Die Dimerisierung von Myomesin könnte eine zentrale Rolle für den Einbau der Myosinfilamente in die naszierende Myofibrille haben. Anhand der gewonnenen Daten wurde ein verbessertes Modell der zentralen M-Bande erstellt. / A deep understanding of the development and function of the sarcomeric muscle depends on the careful study of proteins involved in the assembly of myofibrills, the contractile organelles in cross-striated muscle.<br>
This thesis deals with the sarcomeric M-band protein myomesin. First, the complete cDNA of human myomesin was cloned, sequenced, and subsequently the size of the aminoterminal head domain of myomesin was determined. Myomesin binds to myosin in vitro via domains 1 and 12. Musclespecific creatine kinase is binding to the domains 7 and 8 of myomesin.<br>
Stimulation and inhibition experiments revealed, that serin 618 in human myomesin is phosphorylated in vivo by protein kinase A and that this phosphorylation can be stimulated by activation of beta2-adrenergic receptors. In muscle tissue of patients showing symptoms of the hypertrophic cardiomyopathy, a cardiac disease caused by genetic defects, the amount of phosphorylated myomesin was lowered as detected by a phosphospecific antibody which was established new.<br>
Myomesin dimerizes as shown by yeast two hybrid and biochemical experiments. Myomesin dimerization could be a central point in myofibrillogenesis, when myosin filaments were incorporated in nascent myofibrills. Taking all the data together, an improved model of the central M-band was developed.
|
3 |
Nonlinear dynamics and fluctuations in biological systems / Nichtlineare Dynamik und Fluktuationen in biologischen SystemenFriedrich, Benjamin M. 26 March 2018 (has links) (PDF)
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations.
We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization.
In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn).
In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems.
On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden). / Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen.
In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt.
In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.
|
4 |
Nonlinear dynamics and fluctuations in biological systemsFriedrich, Benjamin M. 11 December 2017 (has links)
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations.
We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization.
In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn).
In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems.
On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden).:1 Introduction 10
1.1 Overview of the thesis 10
1.2 What is biological physics? 12
1.3 Nonlinear dynamics and control 14
1.3.1 Mechanisms of cell motility 16
1.3.2 Self-organized pattern formation in cells and tissues 28
1.4 Fluctuations and biological robustness 34
1.4.1 Sources of fluctuations in biological systems 34
1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36
1.4.3 Cellular navigation strategies reveal adaptation to noise 39
2 Selected publications: Cell motility and motility control 56
2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56
2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57
2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58
2.4 “Sperm navigation in 3D chemoattractant landscapes” 59
3 Selected publications: Self-organized pattern formation in cells and tissues 60
3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60
3.2 “Scaling and regeneration of self-organized patterns” 61
4 Contribution of the author in collaborative publications 62
5 Eidesstattliche Versicherung 64
6 Appendix: Reprints of publications 66 / Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen.
In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt.
In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.:1 Introduction 10
1.1 Overview of the thesis 10
1.2 What is biological physics? 12
1.3 Nonlinear dynamics and control 14
1.3.1 Mechanisms of cell motility 16
1.3.2 Self-organized pattern formation in cells and tissues 28
1.4 Fluctuations and biological robustness 34
1.4.1 Sources of fluctuations in biological systems 34
1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36
1.4.3 Cellular navigation strategies reveal adaptation to noise 39
2 Selected publications: Cell motility and motility control 56
2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56
2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57
2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58
2.4 “Sperm navigation in 3D chemoattractant landscapes” 59
3 Selected publications: Self-organized pattern formation in cells and tissues 60
3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60
3.2 “Scaling and regeneration of self-organized patterns” 61
4 Contribution of the author in collaborative publications 62
5 Eidesstattliche Versicherung 64
6 Appendix: Reprints of publications 66
|
Page generated in 0.0503 seconds